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Abstract

Conditional simulation is a class of Monte Carlo
techniques that can be used to generate equally
probable representations of in-sifu orebody
variability. Contrary to the traditional smooth
orebody models, conditionally simulated orebodies
provide the tools to address uncertainty in grade
variability and the resulting effects on various
aspects of open pit design and production
scheduling. This paper outlines a general
framework for modelling uncertainty and assessing
geological risk, presents currently used geostatistical
simulation algorithms, and presents examples.

Introduction

Effective open pit design and production scheduling
(OPDPS) is critical in surface mining ventures. The
effects of pit design and scheduling and related
predictions have major consequences for the
management of cash flows, which are typically in
the order of millions of dollars. Modern OPDPS is
based on the well known Lerchs-Grossmann
algorithm (Lerchs and Grossmann, 1965)
implemented as the Nested Lerchs-Grossmann
algorithm (Whittle, 1988, 1997; Whittle and
Rozman, 1991). The latter algorithm provides an
optimal scenario of how an orebody should be
mined to best economical advantage, given a set of
geological, mining and economic considerations.
This optimal scenario is sensitive to the uncertainties
related to the input to the optimisation process and,
specifically, the uncertainties of (i) the orebody
model and related in-situ grade variability and
material type distribution, (ii) technical mining
specifications such as slope considerations,
excavation capacities, etc., and (iii) economics
including capital and operating costs, and
commodity prices. Various issues of uncertainty
and risk involved in OPDPS have been raised in .
recent years (e.g. Ravenscroft, 1992; Onur and

Dowd, 1993; Halatchev and Moustakerov, 1994;
Dowd, 1994; Denby and Schofield, 1995; Rossi and
Van Brunt, 1997; Quayle and Cutts, 1997).

Orebody models and their geological characteristics
are widely acknowledged as a major source of
uncertainty and risk. In most cases, sensitivity to
grade variability or metal values is tested with global
changes (Whittle, 1993) which, however, can not
account for the critical local block grade variability.
In traditional orebody modelling (David, 1977,
1988), the question of block grade uncertainty may
be addressed in terms of the estimation variance or
an estimate of the expected distribution of block
grades. Unfortunately, OPDPS is a non-linear
process, thus any confidence intervals derived
directly from block models may not be appropriate
for opimisation purposes. Furthermore, the non-
linear nature of optimisation processes suggests
caution in analyzing predictions from OPDPS based
on single smooth, “average” type orebody model, as
they do not necessarily represent ‘average’ type
predictions.

To address the issues of orebody uncertainty as they
link to OPDSP, an alternative to the traditional
orebody modelling methodologies is proposed using
stochastic conditional simulation (Journel and
Huijbregts, 1978, 1992; David, 1988;
Dimitrakopoulos, 1990, 1994; Armstrong and
Dowd, 1994; Baafi and Schofield, 1997; and others).
Conditional simulation is a class of Monte Carlo
techniques (Halton, 1970) that can be used to
generate equally probable representations of the in-
situ orebody grade and material type variability.

In the following sections, a general framework for
dealing with geological uncertainty in open pit
design and scheduling is first presented and
examples are given. Subsequently, three main
geostatistical simulation algorithms are presented
and their characteristics are discussed. Effects on
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OPDPS are then considered and suggestions are
made.

A framework for modelling orebody
uncertainty and examples

This section outlines a general framework for
dealing with the uncertainty of geological
parameters used for OPDPS. The framework
includes three parts: (i) stochastic conditional
simulations; (i1) transfer functions; and (iii)
uncertainty modelling and risk assessment.

Modelling uncertainty associated with a
mineral deposit

Drilling data represent initial information about a
given mineral deposit and are used for deposit block

Actual but unknown
mineral deposit

deposit

Information about the
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modeling. Block models are subsequently used as
mput to open pit optimisation. The actual deposit is
partially known and the properties of interest such as
grades and ore material types are inferred. In
dealing with the unknown deposit and its attributes
of interest, one may generate several models
(images) of the deposit based on and conditional to
the same data and statistical properties (Figure 1).
These models represent the same deposit and are all
constrained to (a) reproducing all available
information, and (b) being equally probable
representations of the actual deposit.
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deposit
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Figure 1: Describing uncertainty about a mineral deposit.

A series of simulated models of the deposit can
represent or capture the uncertainty about the actual
description of the deposit. Figure 1 schematically
illustrates the idea. Two questions follow: (a) how
to simulate equally probable models of the deposit;
and (b) how these models can be used to solve
specific mining problems. The first question is
addressed in the general context of geostatistical or
stochastic simulations (Journel and Huijebregts,
1978; Alabert, 1987; Dimitrakopoulos, 1990; Verly,
1992; Dietrich, 1993; Journel, 1994; Deutsch, 1994;
and others). The second question is addressed here
in the general context of transfer functions and
optimal decision making.

Transfer functions and the modelling of a
mining process

A mining process or a sequence of processes, such
as open pit design and production scheduling is
conceptualized here as a transfer function. The

specification of a transfer function depends on the
problem under consideration. For example, in pit
optimisation, Whittle 4D is a specific transfer
function used in the mining industry. Other
examples of transfer functions include the grade
control and ore classification in a gold mine (e.g.
Glacken, 1997), additional drilling programs,
recoverable reserves, short term scheduling, stope
design, and others.

Mining processes or transfer functions have specific
parameters of interest for analysis or optimisation,
for example, OPDPS includes parameters such as
the maximum NPV pit shell, discounted cash flow,
average mill feed grade, recoverable reserves. The
output of a transfer function providing the parameter
of interest to be analysed and assessed, and upon
which decisions will be made is termed a response
parameter. Examples of response parameters may
include a series of dollar values of possible
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ore/waste dig lines for ore control, or, in the case of
pit optimisation, series of pit shells, NVP changes,
tonnage to the mill feed, and so on.

Modelling uncertainty about the response-

For a given possible description of a mineral
deposit, a set of possible values for a parameter of
interest may be selected. A computerised mining
process such as OPDPS can then be applied for each
of the selected values. Depending on the mining
process at hand, the selection of parameters of
interest can be formulated as an optimisation

Possible DepoSit
Descriptions

A Mining Process

problem where the objective is to maximise
profitability.

For a set of possible deposit models and each
value(s) for the parameter(s) of interest, the transfer
function will generate a sequence of distributions of
responses that can be seen as a map of the space of
uncertainty of the response. If this mapping is
adequate, then the optimization function will provide
the expected results in terms of possible outcomes,
ranges of expected values and optimal choices.
Figure 2 schematically presents the various parts of
the methodology suggested.
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Figure 2: Diagrammatic representation of the proposed framework

Two important points

As noted earlier, mining transfer functions are
generally non-linear. As a consequence, (i) an
average type block model may not provide an
average map of the space of response uncertainty;
and (ii) a criterion for generating deposit
descriptions may be defined as follows. The
simulation technique selected for modelling must be
evaluated in terms of the mapping of the response
uncertainty.

Point (i) above suggests caution when analysing the
results of a study involving complex mining '
processes and predictions such as OPDPS.

Although predictions can in practice be reasonable,
they do not necessarily capture all aspects of the
uncertainties related to the orebody. Point (ii)

~

indicates that one may study the specific effects that
simulation algorithms may have to the specific
parameters of interest in OPDPS and select those
that provide adequate mapping of the related space
of uncertainty.

Some examples

The above methodology is demonstrated using a
uranium deposit. Figure 3 shows four equally
probable models of accumulation (the product of
thickness and grade) all based on the same
exploration drilling data. Figure 4 presents the
results of the simple transfer function ‘areas for
additional drilling’, constructed from the
combination of 100 simulations of the deposit. The
black areas on the block model indicate the parts
with a greater than 80% chance that accumulation is
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above an economic cut-off. Light gray outlines areas are those where additional drilling would be
areas with an over 80% chance that accumulation is most likely to provide useful information.

below the economic cutoff. The intermediate gray
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Figure 3: Simulations of accumulation in an uranium deposit based on exploration data.

Figure 4: Identifying areas for additional drilling (dark gray); see text for details.

An example of the use of a more complex transfer function and the resulting map of response
uncertainty is presented in Table 1. The table reports the results of the most profitable dig line (dig
line 6) in a part of a bench in a pit, based on 50 simulations of gold grades from blasthole data. The
diglines are generated using a floating cone-like algorithm that draws ore outlines based on mining and
economic criteria. The combination of dig lines and simulated grades generated the results, some of
which are shown in Table 1.

Dig line 6 Value: 9648.935
Dig line 25 Value: 9253.273
Dig line 12 Value: 7586.481
® ®
[ ] [ ]
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Table 1: ‘Equivalent dollar’ value for ore/waste dig lines in a bench of a gold deposit. The highest dollar value
corresponds to the dig line that yields maximum profit.

Figure 5 shows a ‘quick and dirty’ example of an attempt to assess the effects of the orebody
description on Whittle 4D (Whittle, 1993). In this example, a run that uses a smoothed orebody from
the Whittle 4D manual (run 1) is shown together with a run where the orebody is ‘de-smoothed’ using
conditional simulation (run 2). While this example is too limited to substantiate conclusions, it
demonstrates some effects. For example, Figure 5 may suggest that, when the de-smoothed orebody
model is used, the starting point for design is no longer pit 26 but pit 25.
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Figure 5: NVP versus pit shell for a smoothed orebody (run 1) and a corresponding simulated one

(run 2) for a $400/0z gold price.
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Figure 6: Sequential simulation of gold grades in a deposit: (a) deposit and data; (b) a location to
simulate; (c) estimated the local conditional probability distribution (Icpd) at the location in (b); (d)
random drawing from the lcpd; (¢) adding the simulated value to data; and (f) repeat at a new location.
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Conditional simulation algorithms

This section outlines the main geostatistical
simulation algorithms that are currently in common
use. Following the outlines, examples and
comments on practical implementation, advantages
and disadvantages are discussed.

Sequential conditional simulations

Sequential simulations are a family of simulations
based on the same basic algorithm. This basic
algorithm, schematically presented in Figure 6,
consists of the following steps:

1. Randomly select a grid node yet to be simulated

2. Estimate the local conditional probability
distribution (lcpd) of the grades at that grid node

3. Randomly draw a grade value from the Icpd

4. Include the simulated value in the conditioning
data set

5. Repeat points 1 to 4 until all grid nodes have a
value

6. Repeat points 1 to 6 to generate additional
equally probable models.

Two main variants of the sequential algorithm are
used in practice. Sequential Gaussian simulation or
SGS (Journel, 1994; Johnson, 1987) uses simple
kriging to estimate the lcpd. This process assumes
that the lcpd is the classical normal distribution with
the mean and variance of the lcpd being equal to the
simple kriging estimate and estimation variance
respectively. Application of SGS requires
normalisation of the data and back-transformation of
the results.

A recent fast, sequential algorithm (Dimitrakopoulos
and Luo, 1997a) is based on properties of the LU
decomposition of the covariance matrix (Scheuer
and Stoller, 1962) in the form of a sequential group
Gaussian simulation. The major advantage of this
algorithm is greater speed than the typical SGS
algorithm.

The second implementation of a sequential
simulation is based on the estimation of the local c¢pd
using Indicator Kriging (IK), and it is termed
Sequential Indicator Simulation or SIS (Alabert,
1987). Similarly to IK, SIS does not make any
assumptions on the shape of the local cpd, which is
explicitly estimated. As a result, SIS is slower and
more tedious in terms of implementation when
compared to SGS. Various indicator kriging

alternatives may be used to estimate the local cpds
(e.g. Dimitrakopoulos and Dagbert, 1993).

Probability field simulation

In the previous section, the sequential algorithm
used every simulated value together with the actual
data set to estimate the lcpd at each grid node. In
order to save computational time from re-estimating
lepd’s, Probability Field Simulation (PFS) can be
used. (Figure 7). PFS consists of the following
steps:

1. Use original data to estimate the local cpd at all
grid nodes

2. Create a non-conditional simulation (probability
field) in [0,1] using a scaled variogram of the
original data

3. Retain the percentile corresponding to the
probability field at each the grid node

4. Repeat point 2 and retrieve percentiles in point 3
to generate additional realisations.

The major difference between PFS and the
sequential algorithms, as well as the reason for
increased speed, is in estimation of the lcpds at the
grid nodes. lcpds are estimated in a single step and
are conditional only to the original data. The control
over the final results and the reproduction of
variograms comes from step 2, as neighboring
locations will tend to have similar probability
values. This is in contrast to the sequential methods
where continuity is ensured by adding the simulated
data to the actual data set. For step 2 of the PFS
algorithm, any simulation algorithm can be used
(Froidevaux, 1992), however, as speed is a concern
SGS is a common choice.

Simulated annealing

Unlike sequential and probability field simulations,
Simulated Annealing (SA) is a combinatorial
optimisation algorithm based on an analogy to the
physical process of annealing as known, for
example, in metallurgy. SA consists of the
following steps:

1. Establish a grid of blocks with values
honouring the available data and their
distribution
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2.

Define a global ‘goodness’ criterion (objective
or ‘energy' function) that minimises the
mismatch of desired properties and the grid

Reduce the number of swaps as the ‘energy’
function gets closer to the target

If objective function close enoﬁgh to desired

values value, stop the process.

Swap randomly several non-data grid values SA is commonly implemented on a simple

variogram-based objective function, where the

4. Retain the swap if the ‘energy’ function .
desired objective function is the difference between

lowered, otherwise reject the swap and try

another the model and observed variogram.
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Figure 7: Probability field simulation of gold grades in a deposit: (a) deposit; (b) estimated lcpd at a
grid node; (c) and (d) probability fields; () and (f) simulations at the grid node from the sampling of
lcpd in (b) using (e) and (f).
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However, the objective function can be generalised as a weighted average of several components such as
variograms, indicator variograms, conditional distributions, and so on. SA is not as computationally intensive
as it may appear (Deutsch, 1994; Deutsch and Journel, 1992). For instance, annealing implementations allow
several swaps and then update the ‘energy’ function instead of recalculating it after each swap. An additional
aspect of annealing is that in step 4, energy or the value of the objective function is allowed to increase based on
criteria such as the Boltzman distribution, thus the tolerance differences and number of swaps are larger at early
stages of annealing process and decrease as time passes.

The major advantage of annealing is flexibility in the reproduction of characteristics of interest. In this regard,
mining applications may be improved by enhancing the spatial relations of grades when simulating a deposit.
For instance, in addition to the reproduction of variograms (two point statistics), the annealing process can be
formulated to impose the reproduction of multi-point statistics, which describe the connectivity of various ore

grade categories. An additional advantage of SA is that it can use experimental statistics, such as smoothed
experimental variograms (Dimitrakopoulos and Luo, 1997b) that may be more suitable in some applications.
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Figure 8: (a) Exhaustive data; (b) sample data locations with clusters in the areas of high values; (c)

histogram of declustered sample data.
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Figure 9: (a) An ordinary kriging block model of the data in Figure 8b; (b) histogram of the grades in
(a); and (c) experimental variograms of grades in (a) and model used in kriging.
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Figure 10: Two conditionally simulated models using the sample data and sequential Gaussian
simulation algorithm.

Figure 11: Two conditionally simulated models using the data in Figure 8b and the sequential
indicator simulation algorithm.

Figure 12: Two conditionally simulated models using the data in Figure 8b and the probability field
simulation algorithm.
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Figure 13: Sample histograms and variograms from different simulated realisations.

Examples and comparisons

To facilitate the communication of the some basic
characteristics of conditional simulations, this
section uses real, public domain, exhaustive data
(Isaaks and Srivastava, 1989). The exhaustive data
are shown in Figure 8a, while a sample data set
derived from the complete data is presented in
Figure 8b. The sample data set mimics mineral
exploration data sets in that data are clustered in the
areas of high values.

Figure 9 shows a block model based on the data set
and ordinary kriging, a typical block modelling
method, and the histogram and variograms of the
estimated model. As expected, the corresponding
histogram and variograms demonstrate the
substantially lower variability of the kriged model
compared to the actual data. This is typical for any
smooth, ‘average’ type orebody model and is
independent of the specific estimation technique
used.

Figures 10, 11 and 12 show conditional simulations
and associated statistics generated using the SGS,
SIS and PFS algorithms. Examples showing the
reproduction of statistics in simulated realisations

are given in Figure 13. The differences of the
simulated realisations in the figures from the kriged
block model are distinct. Although based only on
470 samples out of a total 78,000 in the exhaustive
data set, the simulations better represent the features
of the original data, while at the same time better
reproduce spatial variability. It seems reasonable to
suggest that the simulations in this example generate
more plausible models than the estimation
algorithms.

Conditional simulation and pit optimisation

Contrary to smooth estimated models, conditionally
simulated orebody models are promising tools in
describing and transferring geologic orebody
uncertainty to pit design and scheduling. The paper
by Rossi and Van Brunt, in this volume, provides a
case study with an eloquent demonstration
advocating the use of conditional simulations in
conjunction with Whittle 4D.

Considering that conditional simulation algorithms
are readily available, additional case studies are
required to elucidate on the various aspects and
effects of grade uncertainty to the various aspects of
open pit optimisation and long term scheduling.
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Comments and conclusions

The most common initial reactions to conditional
simulations are surprise and skepticism. Surprise
because (a) there are several equally probable
models compared to the usual single model derived
from the data, and (b) models look too complex
compared to the smooth and well bebaving orebody
models traditionally used. Skepticism is created
from the simple question: which one of the models
is the correct one or which one should be used?
However, when the complexities of both mineral
deposits and optimisation process are considered,
neither the models appear too complex any longer
nor the availability of several equally possible
models is a surprise. A simple inspection reveals
that all simulated models share the same major
features and reproduce the same data. The
skepticism on which model to use reflects the
common practice of constructing and using a single
orebody model. This single representation of the
orebody is considered as ‘the average’ or the ‘best’
that can be done with the available information.
However, such skepticism about multiple models
may easily be redirected to skepticism concerning
the use of a single orebody model and the possible
effects on evaluating, predicting, designing,
‘planning and producing.

Conditional simulation methods are presented here
as complementary tools to Whittle 4D, focusing on
modelling the geological uncertainty in pit
optimisation and the related effects on optimisation,
predictions, scheduling and planning. Several
simulation algorithms such as the ones described in
this paper are readily available and can be used in
optimisation studies. Which algorithm to use
depends on many factors. Availability of reliable
and well tested routines is a first criterion. The use
of SGS or SIS or PFS also depends on the
efficiency of specific implementations and the
hardware that is available. Generally, SGS is simpler
and tractable, but is controlled by its Gaussian
nature. SIS is flexible conceptually, but it is
relatively slow and space demanding. PFS is fast
and efficient, but perhaps less readily available.
Simulated annealing is powerful, and promising but
also computationally intensive and, perhaps, less
well understood.

The methodology presented in this paper for dealing
with uncertainty is general and can be used in any

mining process that links to the mined orebody. The
methodology may be seen as a ‘top down’ approach

which considers mining parameters of interest and
tests the effects of the parameter values and map the
possible parameter values. In this sense, the major
criterion for the orebody models used is how
adequate are they in providing a map of the possible
mining parameter values.

The practice of conditional simulations requires
more time, effort and expertise compared to
traditional approaches. However, their ability and
promise to deal with geological uncertainty in open
pit design and scheduling suggests that their use is a
well worth the effort.
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