

# Application of Enterprise Optimisation Considering Ultra High Intensity Blasting Strategies

Authors

Stewart Howe

Whittle Consulting

Jason Pan

Whittle Consulting

April 2018

 Whittle Consulting Pty Ltd

 T: +61 3 9898 1755 | F: +61 3 9898 1855

 A: Suite 8, 660 Canterbury Road, Surrey Hills, Victoria 3127, Australia

 E: info@whittleconsulting.com.au | W: whittleconsulting.com.au

 ABN: 71 086 470 457

# **SUMMARY**

This case study assesses the application of Mine-to-Mill integrated unit operations optimisation and Whittle Consulting's Enterprise Optimisation, for the purpose of economic value enhancement of open cut, base and precious metal operations. The study extends the application of these optimisation methods to incorporate the recent practice of Ultra High Intensity Blasting (UHIB), using a desktop approach on a copper/gold open cut porphyry deposit.

In base and precious metal mining, capital and energy are the most significant cost types. Process plant capital is typically the greatest component of initial investment. The comminution circuit is frequently the production bottleneck in a mining operation and is the largest, least-efficient energy consuming unit operation. Blasting fragmentation is usually the most energy efficient unit operation.

Mine-to-Mill optimisation typically employs increased blasting intensity to debottleneck a power constrained comminution circuit. It seeks to transfer the energy requirements from the least to most efficient component to achieve a similar result, thus saving significant costs on energy. This study assesses existing engineering research and industrial trials on the interaction between blasting fragmentation and comminution power consumption and extends its application into the higher blasting powder factor range ( $2 - 4 \text{ kg/m}^3$ ) that is possible with UHIB designs.

The cost and power metrics developed in this study were used as inputs to Whittle Consulting's Prober<sup>®</sup> Enterprise Optimisation software, to assess the life-of-mine impact of variable fragmentation from UHIB, on mine asset Net Present Value (NPV).

#### The study determined that:

- Over a blasting powder factor range of 1.2 to 4.7 kg/m<sup>3</sup>, the total unit production cost for the case study was constant at US\$12.0 ± 0.2 per tonne of ore.
- Production capacity increases of up to 40% were feasible for an enterprise that was mill power constrained.
- Increasing powder factor from a conventional value of 1.2 kg/m<sup>3</sup> drove growth in enterprise NPV by diminishing steps, up to a powder factor of 4.3 kg/m<sup>3</sup>.
- NPV increased by US\$0.6 billion (26%), through that powder factor increase.
- Additionally, Life-of-mine NPV per tonne of CO<sub>2e</sub> emissions increased by 52%, driven by the difference in energy efficiency of blasting relative to comminution.

Mining businesses can create significant increases in the NPV of their operations and development projects, by employing the economic optimisation power of the Mine-to-Mill engineering philosophy and combining it with the economic optimisation utility of Whittle Consulting's Prober<sup>®</sup> software. Applying increased energy to rock breakage and surface area creation through conventional and UHIB blasting designs, can materially increase metal production, cash flow and mine NPV while concurrently reducing Life-of-Mine carbon emissions.

Future research and industrial trials on the characterisation of blasting induced microcrack formation in comminution feed ore, particularly at the elevated powder factors used in UHIB, would enable improved calibration of the data required to optimise Mine-to-Mill operations over their life. It is possible that collaboration between Coalition for Energy Efficient Comminution (CEEC), CRC Ore, Orica and Whittle Consulting may advance such research and industrial trials.

# TABLE OF CONTENTS

| 1 | Intro | oduct | ion                                         | 5    |
|---|-------|-------|---------------------------------------------|------|
|   | 1.1   | Purp  | oose                                        | 5    |
|   | 1.2   | Ultra | a High Intensity Blasting                   | 5    |
|   | 1.3   | Whi   | ttle Consulting Optimisation Methodology    | 8    |
|   | 1.3.  | 1     | Time Value of Money                         | 9    |
|   | 1.3.  | 2     | Theory of Constraints                       | 9    |
|   | 1.3.  | 3     | Activity Based Costing                      | . 10 |
|   | 1.3.4 | 4     | Optimisation Software – Prober <sup>®</sup> | . 10 |
| 2 | Met   | hodo  | logy                                        | . 11 |
|   | 2.1   | Busi  | ness Optimisation Model                     | . 11 |
|   | 2.2   | Pits  | and Phases                                  | . 11 |
|   | 2.3   | Prot  | per Optimisations                           | . 12 |
| 3 | Мос   | del & | Cases                                       | . 13 |
|   | 3.1   | Glob  | oal Settings                                | .13  |
|   | 3.2   | Case  | 25                                          | . 13 |
|   | 3.3   | Ore   | Body                                        | .14  |
|   | 3.4   | Opti  | mised Base Case                             | . 15 |
|   | 3.4.: | 1     | Mining                                      | .16  |
|   | 3.4.2 | 2     | Processing (Mill)                           |      |
|   | 3.4.3 | 3     | Economic                                    | . 18 |
| 4 | Resu  | ults  |                                             | . 19 |
|   | 4.1   | High  | Intensity Blasting – Run 8B                 | . 19 |
|   | 4.1.  | 1     | Mining                                      | . 19 |
|   | 4.1.2 | 2     | Processing (Mill)                           | . 20 |
|   | 4.1.3 | 3     | Economic                                    | . 20 |
|   | 4.2   | High  | Intensity Blasting – Run 8C                 | .21  |
|   | 4.2.  | 1     | Mining                                      | .21  |
|   | 4.2.2 | 2     | Processing (Mill)                           | . 22 |
|   | 4.2.  | 3     | Economic                                    | . 22 |
|   | 4.3   | High  | Intensity Blasting – Run 8D                 | . 22 |
|   | 4.3.  | 1     | Mining                                      | . 23 |
|   | 4.3.2 | 2     | Processing (Mill)                           | .24  |
|   | 4.3.  | 3     | Economic                                    | .24  |
|   | 4.4   | High  | Intensity Blasting – Runs 9A, 9B and 9C     | . 25 |
|   | 4.4.  | 1     | Mining                                      | . 25 |

|      | 4.4.2      | Processing (Mill)                | 26 |
|------|------------|----------------------------------|----|
|      | 4.4.3      | Economic                         | 26 |
| 5    | Discussio  | n                                | 28 |
| 6    | Appendic   | es                               | 31 |
| APPI | ENDIX 1:   | Enterprise Optimisation Settings | 31 |
| APPI | ENDIX 2: ( | Global Model Settings            | 35 |

# **1** INTRODUCTION

Whittle Consulting provides strategic mine planning and business optimisation services to the mining industry, with a focus on enterprise wide simultaneous technical and commercial optimisation over the operation's life. Known as Enterprise Optimisation, Whittle Consulting has applied this approach at over 150 operations and development projects, where consequent Net Present Value uplifts of at least 5-35% have been reported. Whittle Consulting actively disseminates the philosophy and methodology of its Enterprise Optimisation to a wide group of mining professionals, executives and industry financiers via regular "Money Mining and Sustainability" seminars.

Mine-to-Mill optimisation has been applied in the industry since the 1990s with the objective to integrate all mining, processing and logistics unit operations, usually with the goal of maximising metal production or minimising costs. As a commercial discipline, the Mine-to-Mill techniques are routinely applied by a minority of today's operations. In assets where Mine-to-Mill disciplines are employed, the analysis is almost universally a static assessment at a specific point in the mine's life. The complexity of seeking to simultaneously optimise multiple unit operations over an extended time, for a depleting resource is beyond the feasible capacity of most mine planning teams and their tool sets.

Mine-to-Mill methodology often employs higher blasting intensity to debottleneck a power constrained comminution circuit. This study applies engineering research and industrial trial data on the interaction between blasting fragmentation and comminution power consumption and extends its application into the higher blasting powder factor range (2 - 4 kg/m<sup>3</sup>) that is possible with Ultra High Intensity Blasting (UHIB) designs. The cost and power metrics developed in the study were applied as inputs to Whittle Consulting's Prober<sup>®</sup> enterprise optimisation software, to assess the life-of-mine impact of variable fragmentation from UHIB, on mine Net Present Value (NPV).

### **1.1 PURPOSE**

The purpose of this study was to employ Whittle Consulting's Enterprise Optimisation techniques, which dynamically link mining and mineral processing in a single holistic model, to evaluate the effect of UHIB design on Mine-to-Mill debottlenecking and enterprise value. This evaluation was conducted through a case study that examined the influence of variable intensity fragmentation on downstream comminution processes, using conventional blast designs and the UHIB designs that are being trialled by Orica.

The results from this study provide a basis for potential collaborations in Mine-to-Mill strategic mine planning and operational cash flow optimisation, with the support of mine operators and blasting service providers.

### 1.2 ULTRA HIGH INTENSITY BLASTING

Blasting is the most energy efficient process for the creation of new surface area in the sequence that is required to sufficiently expose the target mineral, for recovery through processes such as flotation or leaching. Conversely, comminution processes are the least energy efficient in creating new surface area. Mine-to-Mill optimisation exploits this significant difference in energy efficiency, with 7-8 times leverage, by increasing blasting fragmentation to debottleneck a power draw constrained comminution circuit.

Comminution power and grinding media consumption are reasonably well understood and predicted through engineering equations relating to work. Unit energy consumption is a known function of feed size distribution, product size and the physical characteristics of the rock, defined as Bond Work Index (BWI).

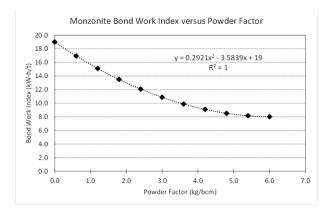



Figure 1: Monzonite Bond Work Index versus Powder Factor

The copper porphyry deposit used in this case study is monzonite with an in-situ BWI of 19 kW-h/t. Figure 1 exhibits the empirical relationship between BWI and blasting intensity (powder factor, kg/m<sup>3</sup>).

Increasing blasting intensity "softens" the rock fragments, postulated to be via lattices of shock induced micro-cracks. Beyond 4 kg/m<sup>3</sup>, the test data indicate diminishing returns from further energy input.

Figure 2 illustrates that most of comminution circuit unit energy reduction arises from this "softening" effect rather than size reduction.

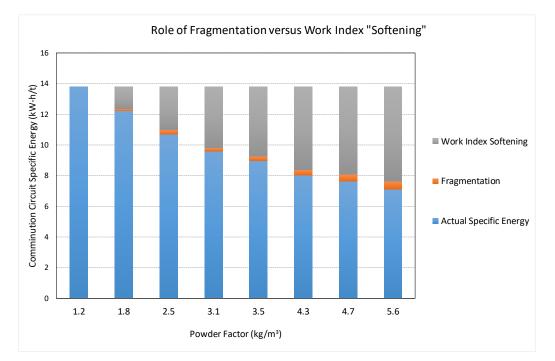



Figure 2: Contributions to comminution specific energy reduction

The leverage of blasting intensity on Mine-to-Mill optimisation is well known and commonly practiced by miners who understand its utility and are not constrained by functional silo KPIs such as minimising mining costs to the exclusion of all other considerations. Nevertheless, there are practical constraints on how far blasting intensity can be increased due to safety constraints from fly-rock and ground vibration impacts on neighbours. Conventional blasting practice does not exceed a powder factor of 2 kg/m<sup>3</sup> and few mines operate near that maximum. Most hard rock blasting operations would not exceed 1 kg/m<sup>3</sup>.

Orica Mining Services has designed two techniques for safely executing Ultra-High Intensity Blasting (UHIB) up to powder factors of 4 kg/m<sup>3</sup> and beyond. These UHIB designs have been tested in production trials at mines in Chile and Mexico at powder factors up to 3 kg/m<sup>3</sup>.

The trial in Mexico employed UHIB in a design known as "Pre-conditioning" where high intensity blasts are extended into the bench below via a much deeper sub-drill, to the usual stemming depth. This preblasted layer acts as a blanket to contain the energy of the next bench blast and fragments the usually coarse stemming zone that occurs in conventional blast design. Basic design features of conventional and Orica's UHIB Pre-condition method are described by the diagrams below.

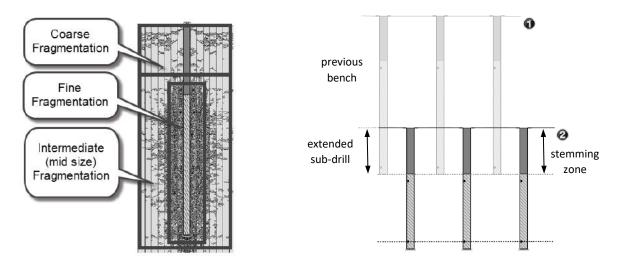
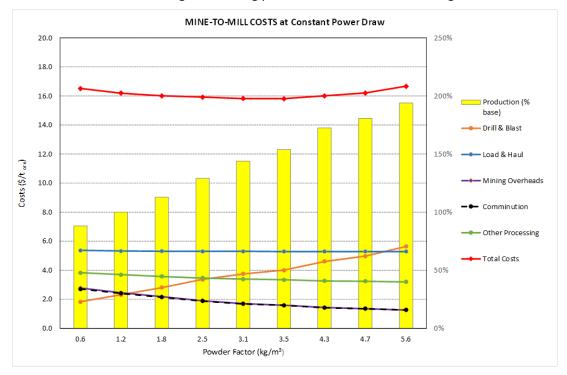




Figure 3: Conventional Blasting (left) and Pre-condition Ultra High Intensity Blast (right)

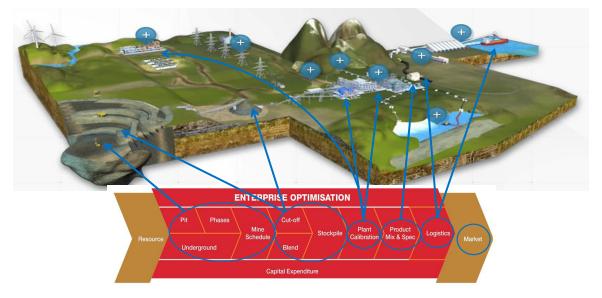
A consistent set of unit costs, labour and equipment productivity have been employed to generate Mineto-Mill cash costs over a broad range of blasting powder factors, illustrated in Figure 4.



*Figure 4: Mine-to-Mill cost build up at constant power draw* 

The cost profiles for each unit operation have been built on the assumption of operation at a constant comminution power draw limit, with blasting energy facilitating increased mill feed rate at the fixed power draw. Figure 4 highlights the trade-off between increasing drill and blast costs and decreasing unit costs of comminution and other fixed processing. The integrated operation's unit costs are quite constant at A\$16.0±0.2/tonne <sub>ore</sub>, (US\$12.0/t) while debottlenecking mill ore capacity by up to 40-50%.

### **1.3 WHITTLE CONSULTING OPTIMISATION METHODOLOGY**


Whittle Consulting are specialists in Integrated Strategic Planning for the mining industry. A team of highly experienced industry specialists, they are dedicated to adding value to mining businesses.

With technical expertise in a range of disciplines including geology, mining engineering, metallurgy, research, mathematics, computing, finance, operational/ financial modelling and analysis, Whittle Consulting has a thorough appreciation of practical, organisational and contextual reality of mining operations. As experts in embracing and harnessing complexity, Whittle Consulting often identifies opportunities that are not readily apparent using traditional strategic mine planning methods.

Since 1999, Whittle Consulting has conducted over 150 Whittle Enterprise Optimisation (EO) studies around the world. These studies repeatedly demonstrated that the disciplined application of Whittle Integrated Strategic Planning and the concepts from the Money Mining & Sustainability Seminar, improves the economics of a mining project or operation by 15%, and in many cases substantially more. These results are achieved even when conventional mining optimisation has been completed prior.

Whittle Consulting operates worldwide and is represented in Australia, United Kingdom, United States of America, Canada, South Africa, Chile, Peru and Indonesia.

Enterprise Optimisation (EO) is a methodology for maximizing the life of mine value of mining and mineral processing assets, using net present value (NPV) as the metric that is maximized. The technique involves simultaneous optimisation of the entire mining value chain from the mineral resource through to the end product market. EO employs the economic principles of the Theory of Constraints (TOC) and Activity Based Costing (ABC), and utilizes the proprietary Prober<sup>®</sup> E software of Whittle Consulting.



EO involves simultaneously optimizing all ten steps in the value chain shown in Figure 5.

Figure 5: Mining and mineral processing value chain

An EO assessment consists of three stages;

- 1. The Base Case in which the existing Life-of-Mine plans and performance characteristics of the enterprise are used to calibrate the EO model;
- 2. The Optimised Case in which the enterprise is mathematically optimized using the same structure, limitations and parameters as the Base Case, by employing the 10 Whittle sequential optimisation steps:
  - 1) Whittle pit optimisation using Geovia Whittle software
  - 2) Phase (pushback) optimisation for early access to high grade ore while maximizing deferral of waste movement
  - 3) Mine schedule sequence and rate of production optimisation
  - 4) Application of variable cut-off "grade" using Ken Lane's theory applied to cut-off defined as Net Value per Bottleneck Unit, rather than metal grade
  - 5) Use of stockpiles for lower grade ore mined early in life, processed later
  - 6) Simultaneous optimisation of Steps (1) to (5), and subsequent steps
  - 7) Blending and processing optimisation of ore types and process options
  - 8) Product grade, throughput, grind size and recovery optimisation of payable metal production through the available process options
  - 9) Logistics optimisation in circumstances where downstream logistics may be the constraint on cash flow and project value.
  - 10) Capital to de-constrain the enterprise economic bottleneck (not used in this study's model runs)
- 3. Assessment of Scenarios in which other potential degrees of freedom are tested.

In this case study where the model does not require calibration to existing mine plans and facility performance, the Optimized Base Case forms the foundation for assessing the effects of variation in blasting intensity. EO runs that were conducted to develop the Optimized Base Case are not reported in this document. Only the Optimized Base Case (designated Case 8A) is reported and discussed together with the scenario cases that progressively tested increased blasting intensity. The final scenario that was assessed (designated Case 9B) represents the optimized enterprise employing variable high intensity blasting.

Enterprise Optimisation methodology is anchored in the following principles;

#### **1.3.1** Time Value of Money

A mining operation will typically have a life of decades. A methodology for optimizing the operation's value must take account of the time value of money. Cash today is more valuable than the same quantity of received cash in ten years' time. Whittle's optimisation algorithm discounts future cash flows to generate a Net Present Value (NPV) that is used to directly compare alternate scenarios.

#### **1.3.2** Theory of Constraints

The Theory of Constraints (TOC) is a management philosophy originated by Eliyahu M. Goldratt in the 1980s, that has been widely applied in the manufacturing industries. It draws upon methodologies such as the Critical Path Method, System Dynamics and Program Evaluation and Review Technique. TOC's primary tenet is that an enterprise which is managed to a goal, such as maximizing cash flow, is limited by constraints. A very small number of the system constraints, often just one, act as the bottleneck that

limits overall output, such as cash flow. Relaxation of that constraint can debottleneck the system's output until another bottleneck is encountered.

In mining enterprises, the common constraints are process plant capacity, mining tonnage, processing concentration, vertical rate of advance, stockpile or dump size, power or water supply limits, and product specification or environmental emission limits. In a system that has been optimized the primary bottleneck ought to be the constraint that has least ability to change. In mining, this is usually the most capital-intensive part of the operation such as the SAG/Ball mill or the shaft in underground mines. In some circumstances it can be externally imposed, for example the total emissions into an airshed. Frequently mining rate is one of the easiest constraints to debottleneck, because discrete units of mining capacity (mobile equipment) can be obtained by leasing or for relatively small capital compared to new plant expansions. In some cases, downstream markets can impose a constraint on output of commodity products for an individual mine.

#### 1.3.3 Activity Based Costing

Enterprise optimisation has an essential requirement that all resource consumption costs are allocated to the physical activity that drives that resource being consumed. Only cash costs are considered with accounting considerations of depreciation and amortization being excluded, as they are in all NPV cash flow analysis.

All costs must be segregated into variable (attributable) costs that are incurred per unit of resource consumed, and period costs which are absolute amounts incurred as a fixed cost for a certain time period to keep an activity operating. For example, typical variable costs are consumption of diesel fuel and routine maintenance spares per tonne (or bcm) of waste rock or ore loaded, or consumption of diesel and tyres per tonne-kilometre of material hauled.

If a permanent workforce is employed and a mining rate of say 60Mt p.a. is planned for the coming year, then the A\$30 million annual cost of operating labour required to man the 60Mt p.a. mining fleet, is a period cost. The period cost would change if an 80Mt p.a. mining rate and fleet were planned in a subsequent period of time. Period costs are "consumed" by time, rather than by mineral resource consumption.

#### 1.3.4 Optimisation Software – Prober®

Whittle Consulting utilizes its proprietary Prober software to implement modelling and optimisation of a myriad of complex elements and inter-relationships in a mining business. Prober models the mining and processing operations from inputs through to end markets, with the modelled solution optimized to maximize NPV, produced by a schedule that demonstrates the cash flow and material paths through the system over the mine's life. The enterprise may be comprised of multiple mines and processing plants in dispersed geographies that inter-relate through physical assets or markets.

As it is not practical to provide entire block models as direct Prober inputs, aggregation into parcels of like materials by rock type (oxide/sulphide, domain, geometallurgy) of similar net values (including period cost allocation for use of a bottleneck) occurs upstream of input. In open-pit mines, the mining shape selection (pits and phases) are sized using Geovia Whittle pit optimisation software by a skilled mine planning engineer based on the assumption of probable outcome (in particular for this model, of what powder factor and grind size is most likely used). Initially some iteration between the two optimizers is necessary as Prober<sup>®</sup> is used to explore probable outcomes which is then used to inform pit design. Underground stope designs, shapes and sequences employ a similar approach with other software.

# 2 METHODOLOGY

Whittle Consulting's Enterprise Optimisation has the ability to model and mathematically optimise a mining enterprise with all the above drivers, to support the development of a strategic business planning and scenario based assessment of Ultra High Intensity Blasting. The Enterprise Optimisation follows a 10 step methodology as shown in Figure 6.

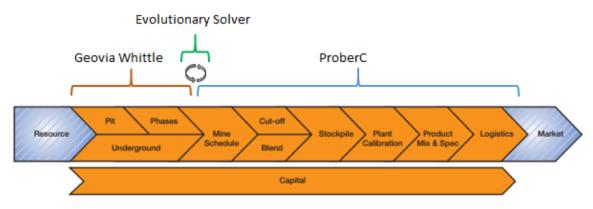



Figure 6: Enterprise Optimisation methodology 10 steps

### 2.1 **BUSINESS OPTIMISATION MODEL**

The Whittle Enterprise Optimisation process starts with the construction of a Business Optimisation Model document and file. The purpose of the Business Optimisation Model is threefold;

The first objective is to document the structure and specifics of a mining operation in a way that fits with Prober<sup>®</sup>'s conceptualisation of a mining operation. A flow diagram showing material movements through the operation is drawn. The Business Model is a spreadsheet representation of that flow diagram.

The second purpose of the Business Model is to model the flow of material through the system such that the material data (e.g. rock mass, mineral masses, rock type) can be entered and the output materials and monetary flows through all procedures are calculated. In this respect the Business Model is not only a descriptive document but also a functional component of the system model's design.

The Business Model has a third purpose which is to present the process of how an operation has been modelled, so as to facilitate validation and troubleshooting.

### 2.2 PITS AND PHASES

Geovia Whittle takes as input a block model representing the physical ore body. While the software package provides some capability to specify a business model through a user interface, Whittle Consulting instead pre-calculate the mining costs, processing costs and revenues for each block in the block model. This is done by inputting, via an automated process, each block into the Business Optimisation Model with a single specified processing path chosen for that block based on a set of rules and likely operating conditions and constraints at the time the block is to be extracted.

Geovia Whittle is then invoked, with some additional parameters such as maximum slopes and minimum mining widths if necessary, to size the pit. Other functions produce outcomes that are purely optimal when taking into account multi-path processing systems, multi-pit mines and discounted cash flows. An experienced Mine Planning Engineer may use manual techniques to try to further improve the outcome.

The pit and phases created are then exported from Geovia Whittle as pit-list and shape files.

### 2.3 PROBER OPTIMISATIONS

Prober<sup>®</sup> accepts an input text file that follows a specific syntax and grammar. Whittle Consulting build this file using the automation of another spreadsheet termed the Prober<sup>®</sup> Input sheet. This contains a more formal definition of the structure of the model than the Business Model spreadsheet. However, it typically references the Business Model sheets directly for material input/output calculations.

Prober<sup>®</sup> accepts the input file, checks validity and then proceeds with the simultaneous optimisation of schedule, cut-off, stockpiles, logistics and product mix. Prober<sup>®</sup> is implemented as a combination hillclimbing algorithm to find solutions obeying the sequencing rules, with calls to a nested linear programming package for all downstream systems.

Prober<sup>®</sup> runs not as a single optimisation but as multiple samples that each return their own schedule and resultant NPV. Each sample starts with a different initial random seed and completes when a local optimal point is reached. A local optimum is no guarantee of global optimality, so hundreds or thousands of samples may be run for each specific set of parameters until an acceptable level of convergence between results is achieved. An example, showing for Case 9C the gross NPV in Prober before manual adjustments such as period cost addition for each sample, sorted in ascending gross NPV order, is shown in Figure 7.

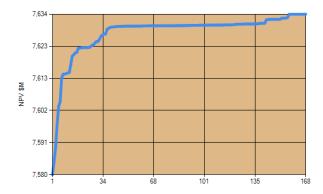



Figure 7: Sample convergence of 168 samples run in Prober for Case 9C

The output from Prober<sup>®</sup> is a text file that specifies all movements of material and cash over the life of mine. This information is imported to a data base which is then used to create spreadsheet reports.

# 3 MODEL & CASES

All mining operations differ in their geological character, cost structure and constraints. The potential benefits from employing variable blasting powder factor including in the UHIB range, will vary from case to case. Limited industrial operating trials of mine-to-mill optimisation have been reported in detail and the early UHIB trials were similarly brief on integrated performance benefits. This report examined the role of UHIB and mine-to-mill techniques through a series of case studies within Whittle Consulting's Enterprise Optimisation methodology using its Prober<sup>®</sup> optimiser software.

A hypothetical, yet realistic case study model of an open cut copper porphyry was built in which the effects of variable blasting intensity could be evaluated. The case study deposit, known as *Marvin*, is a well-known hypothetical deposit that has been employed by Whittle Consulting and others for such studies. The deposit and its geographical context are similar to the Cadia Hill mine in western NSW. The components of the model are an ore body (as a block model), a mining model, a processing model, and a financial model. The Prober<sup>®</sup> model was built and then fully optimised using the full suite of 10 optimisation steps (other than incremental capex). That Base Case (Run 8A) was then provided with the opportunity to employ variable blasting over steps in powder factor from 1.2 kg/m<sup>3</sup> to 4.7 kg/m<sup>3</sup>.

#### **3.1 GLOBAL SETTINGS**

Global economic and unit operations settings are contained in Appendix 2.

#### **3.2 CASES**

A series of preliminary runs were conducted to test the Prober<sup>®</sup> model, validate the inputs and complete assurance on the outputs using the full Enterprise Optimisation 10 step process. Following the satisfactory completion of those preliminary runs, the following matrix of cases was run:

| PowderFactor(kg/m³) | 1.2    | 1.8    | 2.5          | 3.1          | 3.5          | 4.3       | 4.7       |  |  |
|---------------------|--------|--------|--------------|--------------|--------------|-----------|-----------|--|--|
| Mining Rate         |        |        |              |              |              |           |           |  |  |
| 60Mt                | Run 8A |        | Н            | ligher PFs r | not availabl | e         |           |  |  |
| 60Mt                |        | Run 8B | not availabl | e            |              |           |           |  |  |
| 60Mt                |        |        | Run 8C       |              |              | PFs not a | available |  |  |
| 60Mt                |        | Run 8D |              |              |              |           |           |  |  |
| 70Mt                |        |        |              | Run 9A       |              |           |           |  |  |
| 80Mt                |        |        |              | Run 9B       |              |           |           |  |  |
| 90Mt                |        |        |              | Run 9C       |              |           |           |  |  |

Table 1: Prober optimisation run matrix

### 3.3 ORE BODY

The *Marvin* ore body used in this assessment is a realistic copper-gold porphyry created by geologist Norm Hanson over a decade ago for the purposes of case studies. *Marvin* exhibits higher gold grades at shallow elevations and higher copper grades at deeper elevations, as displayed in Figure 9. Resource block model grade/tonnage semi-log curves versus cut-off grade are provided in Figure 8 for copper and gold.

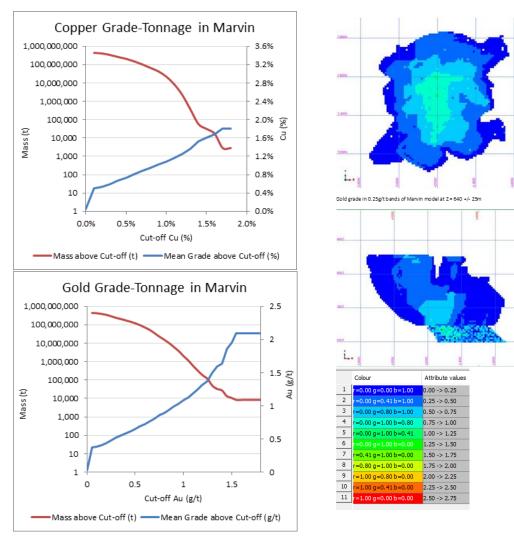



Figure 8: Grade Tonnage Curves



"Cut-off grades" presented in isolation in each grade/tonnage curve above are in practice optimized together during Enterprise Optimisation.

The ore body contains oxide, transition and fresh (sulphide) zones that behave differently in terms of their metallurgical and physical (hardness) characteristics. The entire resource block model tonnes and grade by ore type are summarised in Table 2 below. Only a portion of the ore body that is described by the block model, is mined as ore or waste.

| Rock Type | Mineral<br>Type | <b>Quantity</b><br>(Mt) | Contained<br>Cu (kt) | Contained<br>Au (k oz) | Cu grade<br>(%) | Au Grade<br>(g/t) |
|-----------|-----------------|-------------------------|----------------------|------------------------|-----------------|-------------------|
| Waste     | waste           | 4,139                   | -                    | -                      | -               | -                 |
| Ore       | sulphide        | 45                      | 199                  | 388                    | 0.44            | 0.27              |
| Ore       | sulphide        | 192                     | 900                  | 1,962                  | 0.47            | 0.32              |
| Ore       | transition      | 88                      | 546                  | 1,387                  | 0.62            | 0.49              |
| Ore       | transition      | 85                      | 505                  | 1,114                  | 0.59            | 0.41              |
| Ore       | oxide           | 9                       | 25                   | 151                    | 0.28            | 0.52              |
| Ore       | oxide           | 17                      | 44                   | 215                    | 0.26            | 0.40              |

Table 2: Marvin Ore Body Resource Block Model Summary

#### **3.4 OPTIMISED BASE CASE**

The Base Case model consists of the ore body, a mining procedure, stockpiles, a Heap Leach and a Processing Plant consisting of a SAG Mill, Ball Mill and Flotation Circuit. Crushing occurs upstream of the Heap Leach and Processing Plant. Figure 10 describes the model flowsheet.

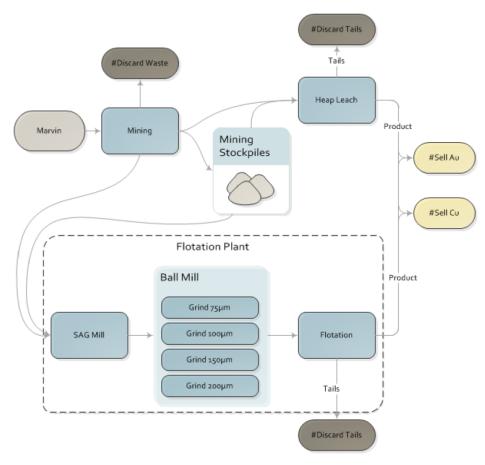
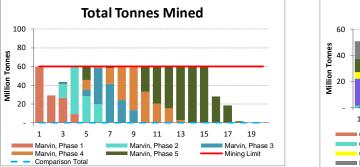



Figure 10: Prober<sup>®</sup> flowsheet for Base Case

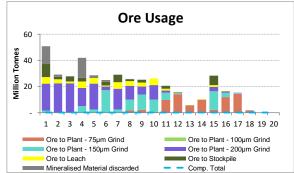
An initial optimized base case (Run 8A) was conducted with blasting powder factor fixed at 1.2 kg/m<sup>3</sup> for all ore except leach-destined Oxide which could be blasted at 0.6 kg/m<sup>3</sup>. Waste was blasted at 0.6 kg/m<sup>3</sup> in all runs. All of the Whittle Consulting simultaneous optimisation drivers described in Figure 6, except incremental capital, were employed.

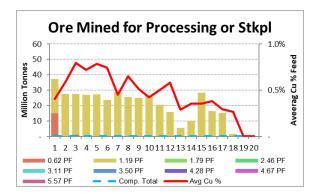
Base case settings are summarised in Appendix 1.1.

Variable mining costs for waste and ore are respectively A\$1.30/t and A\$1.91/t, plus an additional A\$0.02/t per bench at deeper elevations. The mining cost model assumes an owner/miner strategy with leased mobile mining equipment. Total mining period costs are A\$111M p.a. Increases in drill and blast activity at higher powder factors and for higher mining rates in Runs 9A-C, are represented as increased period costs for incremental operating labour and equipment lease costs with no capital expense.


The stockpile has a capacity of 10Mt and rehandled material incurs a cost of A\$1/t. In Prober<sup>®</sup> stockpiling implicitly blends input materials with all other materials already on that stockpile.

The Heap Leach is limited to 5Mt p.a. and has a variable cost of A\$2/t and no period costs. Recoveries are set out in Appendix 1.1 by rock type, in "Heap Leach (Process)".

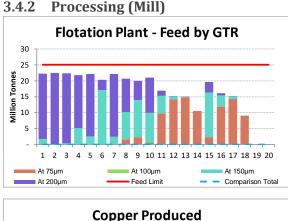

The SAG Mill, Ball Mill and Flotation processes are collectively termed the Processing Plant. The SAG plus Ball Mill and Crusher power draw limit of 277 GW-h p.a. is expected to be the primary bottleneck in the system. The optimiser may choose one of four final grind sizes for each input parcel of material. Coarser grinds incur lower power and steel grind media costs (and reline costs) while having a lower metal recovery. Finer grinds achieve a greater recovery in the Flotation procedure but incur a higher cost of consumption of power and steel media. These recovery/cost/grind size interrelationships are detailed in Appendix 1.1.

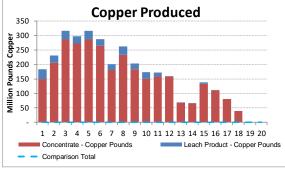

The Flotation procedure recovers gold and copper at a rate that is dependent on the rock type and the input particle size. Whittle Consulting commonly refers to this relationship as the Grind-Throughput-Recovery (GTR) curves. Those rock types and grinds that require greater power input in the SAG/Ball Mill also yield a greater recovery in the flotation circuit, which gives the optimiser a balance to strike. The relationship between grind size and recovery is detailed in Appendix 1.1 in "Flotation (Process)".

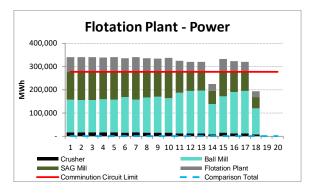
Optimised Run 8A outputs are presented in the series of graphs and commentary below through mining, processing and financial metrics.









- Mined at maximum 60Mt except in Years 2 and 3 at initial low strip ratio and in oxide zone
- Copper grade maximized early in life
- Mill at capacity until Year 12
- Leach not fully utilized in all periods



Maximum grind size of 200µm dominates in the first five years in order to maintain production within the comminution power limit while harder ore is mined, sacrificing some metal recovery. As ore specific energy decreases, grind size is reduced to maximize recovery within the power limit.







- Mill runs to power limit in all periods except two years near end of life
- Grind size progressively increased to utilize full power limit to maximize copper output and revenue
- Copper production brought into earliest period within power constraint

Figure 12: Base Case Run 8A – Processing metrics and copper production

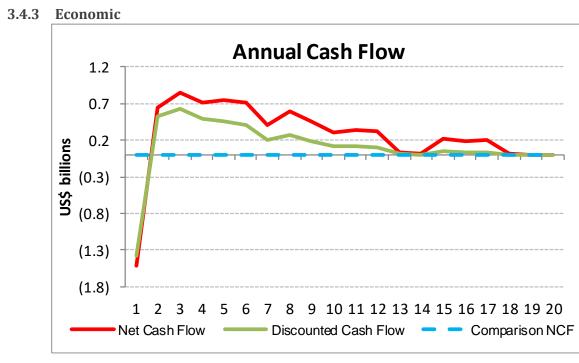
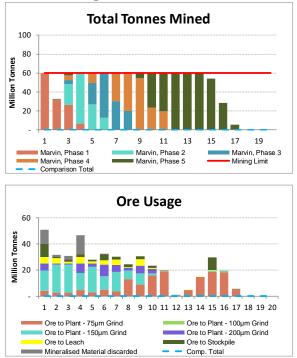
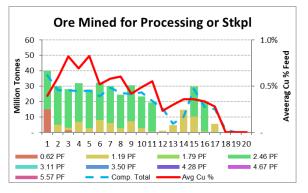


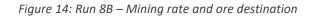

Figure 13: Run 8A – Life of Mine cash flow

Run 8A's NPV is US\$2.29 billion from Life-of-Mine copper production of 1.50Mt. Comparisons of the subsequent UHIB scenarios are referenced to the production and cashflow outcomes of Run 8A.


# **4 RESULTS**


Assessment of the potential optimisation leverage that could be realised from increased blasting intensity was evaluated through stepped increases of powder factor above the optimised Run 8A Base Case that employed 1.2 kg/m<sup>3</sup>. Runs 8B, 8C and 8D which are reported below progressively enable higher powder factors to be employed by Prober<sup>®</sup>, if chosen. A dashboard of standard Prober outputs is presented and discussed in sequence.

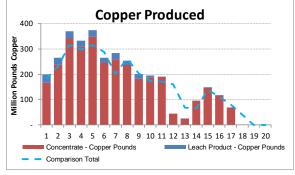
### 4.1 HIGH INTENSITY BLASTING - RUN 8B

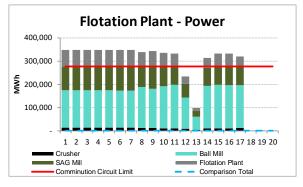

In Run 8B powder factors up to 2.5 kg/m<sup>3</sup> were made available to Prober<sup>®</sup>.

#### 4.1.1 Mining







- Mined at maximum 60Mt except in Year 2 at initial low strip ratio and in oxide
- Copper grade increased in Years 2-5 versus Run 8A
- Loss of ore supply in Years 13 and 14 is mining limited, though still optimal
- Majority of ore blasted at maximum 2.5 kg/m<sup>3</sup> (maximum available)

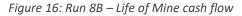



Increasing the available blasting intensity de-constrained the mill ore feed rate at maximum power consumption. Prober<sup>®</sup> took advantage of that lack of constraint by increasing ore throughput to beyond 25Mt p.a. It has been assumed that beyond a 25% increase in feed rate to the flotation section (at 25Mt), reduction in residence time and pumping capacity limits would be likely to induce copper recovery loss. From Run 8B onwards a hydraulic limit of 25Mt p.a. was placed on feed to the flotation section.

#### 4.1.2 Processing (Mill)





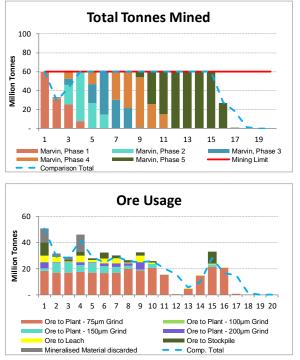



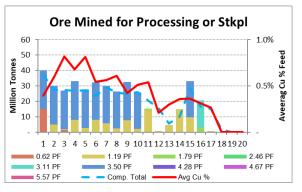

- "Comparison" data is from Run 8A
- Mill runs to power limit in all periods except two years when short of ore
- Average grind size stepped down to maximize recovery versus Run 8A
- Copper production brought forward from Years 12-13 to Years 3-7

#### Figure 15: Run 8B – Processing metrics and copper production

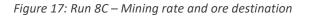


#### 4.1.3 Economic



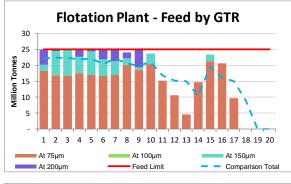


Run 8B's NPV is US\$2.61 billion from Life-of-Mine copper production of 1.56Mt.

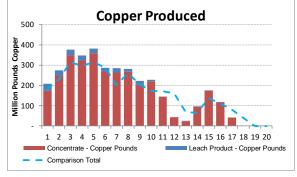
### 4.2 HIGH INTENSITY BLASTING - RUN 8C

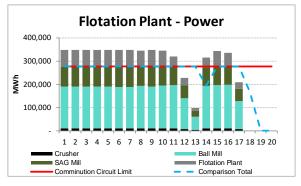

In Run 8C powder factors from 1.2 up to 3.5 kg/m<sup>3</sup> were made available to Prober<sup>®</sup>.

#### 4.2.1 Mining



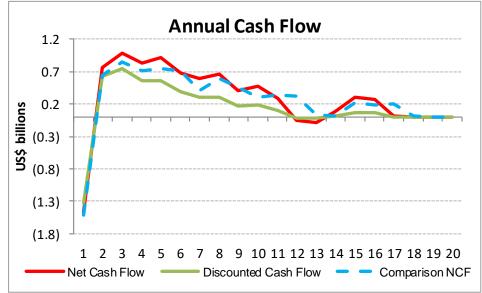




- "Comparison" data is from Run 8A
- Mined at maximum 60Mt except in Year 2 at initial low strip ratio and in oxide
- Copper grade maximized per Run 8A
- Loss of ore supply in Years 13 and 14 is mining limited, though still optimal
- Majority of ore blasted at maximum 3.5 kg/m<sup>3</sup> (maximum available)

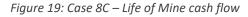



Increasing the available range of blasting intensity to 3.5 kg/m<sup>3</sup> has been used by Prober<sup>®</sup> to considerably increase the average powder factor, although Prober<sup>®</sup> uses a mix of the maximum and minimum powder factors to optimize energy efficiency, cost and debottlenecking, rather than the full range of available blasting intensities.

#### 4.2.2 Processing (Mill)



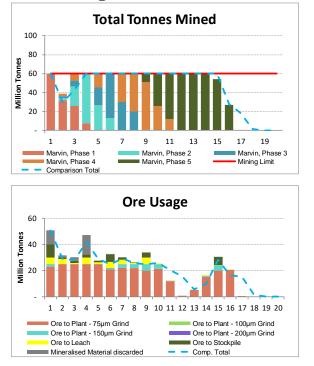


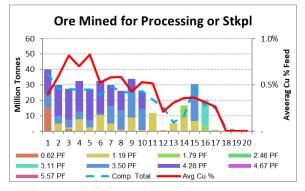

- "Comparison" data is from Run 8A
- Mill runs to power limit in all periods except two years when short of ore
- Average grind size is reduced with 75µm dominant, to maximize recovery
- Copper production brought forward from Years 12-13 to Years 3-7

#### Figure 18: Run 8C – Processing metrics and copper production




#### 4.2.3 Economic




Run 8C's NPV is US\$2.77 billion from Life-of-Mine copper production of 1.60Mt.

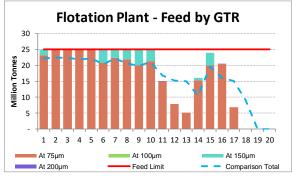
## 4.3 HIGH INTENSITY BLASTING - RUN 8D


In Run 8D powder factors from 1.2 up to 4.7 kg/m<sup>3</sup> were made available to Prober<sup>®</sup>. A prior case (7C) with all powder factors up to 5.6 kg/m<sup>3</sup> being made available to Prober<sup>®</sup>, did not produce any incremental benefit. The maximum blasting intensity was not utilized by Prober<sup>®</sup>.

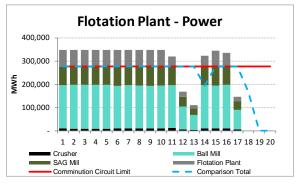


#### 4.3.1 Mining



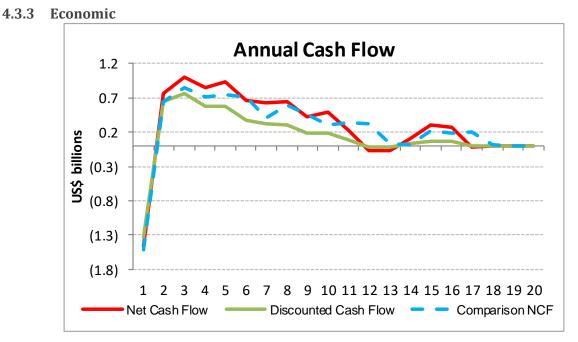

- Mined at maximum 60Mt except in Year 2 at initial low strip ratio and in oxide
- Copper grade maximized per Case 8A
- Loss of ore supply in Years 13 and 14 is mining limited, though still optimal
- Majority of ore blasted at maximum 4.3 kg/m<sup>3</sup> or less (not maximum available)

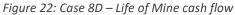



Increasing the available range of blasting intensity to 4.7 kg/m<sup>3</sup> has been utilized by Prober<sup>®</sup> to increase the average powder factor relative to Run 8C, although Prober<sup>®</sup> chose to employ a maximum powder factor of 4.3 kg/m<sup>3</sup> in combination with 3.5 kg/m<sup>3</sup> or less.

The total mining cost's apparent minimum point as depicted in Figure 4, occurs at powder factors between 3.1 and 3.5 kg/m<sup>3</sup> under conditions of constant power draw.

#### 4.3.2 Processing (Mill)



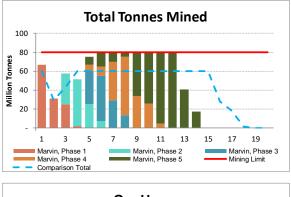


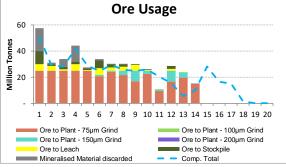

- "Comparison" data is from Case 8A
- Mill runs to power limit in all periods except two years when short of ore
- Grind size of 75µm is heavily dominant, to maximize recovery
- Copper production brought forward from Years 11-13 to Years 3-7

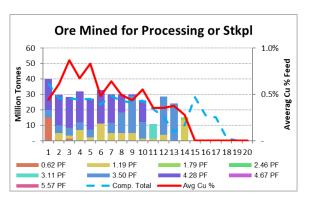
Figure 21: Case 8D – Processing metrics and copper production



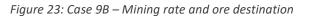



Run 8D's NPV is US\$2.80 billion from Life-of-Mine copper production of 1.61Mt.


### 4.4 HIGH INTENSITY BLASTING - RUNS 9A, 9B AND 9C


Runs 8A-D were constrained by the available mining rate. In order to quantify the impact of releasing that constraint, a further set of runs was conducted at mining rate limits of 70Mt (Run 9A), 80Mt (Run 9B) and 90Mt (Run 9C).

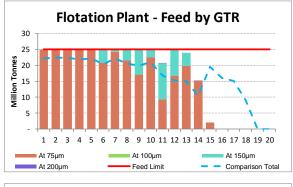
Relative to Run 8D's NPV of US\$2.80 billion the above three runs produced NPVs of US\$2.87 billion, US\$2.89 billion and US\$2.87 billion respectively. The results for Run 9B (the NPV maximum) are provided below. Run 8A results are used as the comparator.

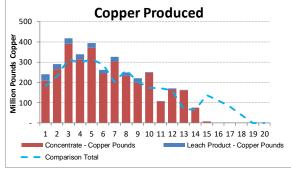

#### 4.4.1 Mining

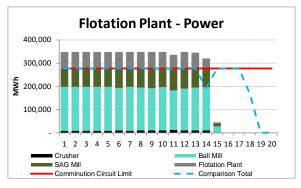







- Mined at maximum 80Mt in Years 5-12
- Copper grade maximized per Runs 8A-D
- Reduced ore availability only in Year 11 and at end of life
- Majority of ore blasted at maximum 4.3 kg/m<sup>3</sup> or less (not maximum available)





Mine life had previously reduced from 18 years in Run 8A to 17 years in Runs 8B-D. In Run 9B the higher maximum mining rate has enabled mine life to be reduced to just over 14 years for the same life of mine copper output. The profile of powder factors is very similar to that employed in Run 8D.

#### 4.4.2 Processing (Mill)

4.4.3







- "Comparison" data is from Run 8A
- Mill runs to power limit in all periods
- Grind size of 75µm is heavily dominant, maximizing recovery
- Copper production brought forward from Years 11-18 to Years 1-10

Figure 24: Run 9B – Processing metrics and copper production

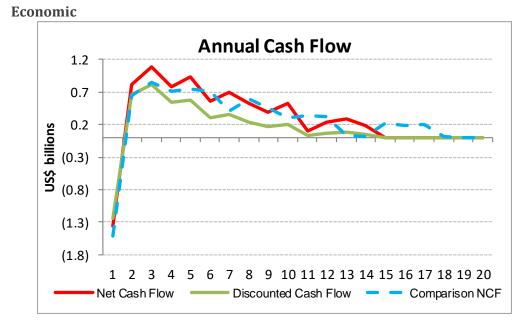



Figure 25: Run 9B – Life of Mine cash flow

Run 9B's NPV is US\$2.89 billion from Life-of-Mine copper production of 1.59Mt.

Utilization of high intensity blasting to debottleneck *Marvin*'s processing power limit increased the mine's NPV by US\$0.60 billion or 26%. Copper production increased by 6% while Life-of-Mine CO<sub>2e</sub> emissions in

the final 3 years of the original mine life have been eliminated, a 17% reduction. Figure 26 illustrates the emission patterns.

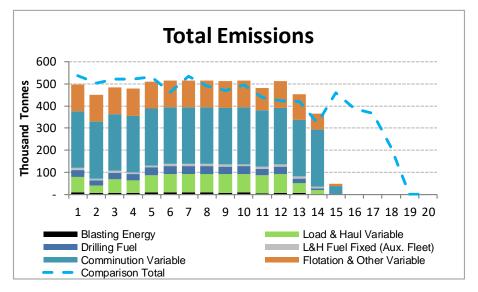



Figure 26: Life of Mine GHG emissions with high intensity blasting

The driving force of both economic and emission efficiency is the differential energy efficiency between blasting (highest efficiency unit operation) and comminution (lowest efficiency unit operation). Application of Enterprise Optimisation's theory of constraints, activity based costs and Prober®'s computational power has facilitated a 52% increase in NPV per unit of CO<sub>2e</sub> emissions.

# **5 DISCUSSION**

The Mine-to Mill methodology for optimisation of integrated mining operations has been employed by the mining industry for over 25 years. Its original objective focused primarily on minimising integrated production costs over the entire mining value chain. Production cost minimisation included the role of capacity debottlenecking that enabled expansion of operating scale and revenue.

Mine-to-Mill optimisation has exploited the large difference in energy efficiency between blasting and comminution, which represent the greatest and least energy efficient unit operations in mining, respectively. Increased energy input to create new surface area via fragmentation from blasting has the effect of unloading the required energy input in the comminution processes.

Prior desktop research and industrial trials were static assessments of Mine-to-Mill effects. No prior work, other than one Whittle Consulting client study, has sought to assess the impact of variable fragmentation on enterprise economic value over the mine's life. This study has examined the use of variable blasting intensity as a driver of economic value maximisation over the mine's life, using a sophisticated simultaneous optimisation method.

The following conclusions are supported by the case study analysis.

- 1. Does high intensity blasting facilitate integrated production costs reduction? Very little reduction in total unit production costs per tonne of ore or tonne of product metal, is evident over a wide range of blasting powder factors. Over a powder factor range of 1.2 kg/m<sup>3</sup> to 4.7 kg/m<sup>3</sup> unit production costs varied over US\$12.0 ± 0.2 kg/m<sup>3</sup>, a variation of ± 1.4%.
- Can increases in enterprise value be demonstrated by using Prober<sup>®</sup> dynamic optimisation software with blasting intensity as an independent variable? The NPV of an optimised life-of-mine plan employing a conventional 1.2 kg/m<sup>3</sup> powder factor, can be increased by 26% by selectively employing powder factors up to 4.3 kg/m<sup>3</sup>.

Figure 27 illustrates the progression of incremental NPV that is enabled by greater blasting intensity. The NPV progression from Run 8A through to 8D indicates a trend of diminishing impact on value growth as blasting intensity is increased.

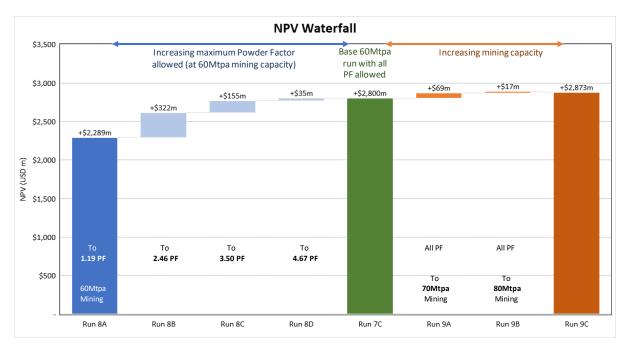



Figure 27: Optimized NPV progression with high intensity blasting

3. For mill power constrained base metal operations, what scale of debottlenecking and economic value improvement is feasible from applying Ultra-High Intensity Blasting in conjunction with Enterprise Optimisation techniques? In the Marvin case study, NPV growth of 26% was enabled by increased blasting intensity. An estimated 30-40% of that NPV uplift occurs by increasing powder factor from 1.2kg/m<sup>3</sup> to 2.0kg/m<sup>3</sup>, the upper end of conventional blasting practice. The residual 60-70% of the prospective NPV uplift requires use of UHIB practices in order to increase powder factor to 4.3 kg/m<sup>3</sup>. Little, if any value increase occurs beyond 3.5 kg/m<sup>3</sup>.

Ore production increases of approximately 20% are estimated to be achievable at constant mill power consumption, by increasing powder factor to its upper limit of typically 2.0 kg/m<sup>3</sup> using conventional blasting practice.

Application of UHIB practices with powder factors up to  $3.5 \text{ kg/m}^3$  has an indicated potential to increase production by 40-50%. However, downstream processing limits or loss of metal recovery are likely to constrain the extent of production growth that is economically and physically practical. In the case study production growth without capital investment was limited to 25%, as an input constraint.

All base and precious metal mining operations that are processing power constrained have the opportunity to maximize cash flow and asset NPV by increasing blasting intensity up to the maximum that is feasible with modern conventional blasting practice. Capture of that value uplift and maximisation of the economic potential of the mine is facilitated by employing Life-of-Mine enterprise optimisation as enabled by Whittle Consulting's Prober<sup>®</sup> strategic mine planning software.

The extent to which additional mine value growth can be accessed by applying even greater blasting intensity up to 4.3 kg/m<sup>3</sup> powder factor, will depend on the feasibility of using UHIB practices at that specific mine. UHIB is in its developmental phase with a limited number of known industrial scale production trials. Management of in-pit water, deposit geotechnical conditions, blast hole stability and neighbour/regulatory constraints will determine the boundaries on implementation of UHIB at individual operations.

This study highlights that an objective of total production cost minimisation would not have driven the maximisation of enterprise NPV. Under the influence of variable blasting intensity, NPV growth of 26% was indicated with no change in unit production cost, although the cost mix had shifted.

Many characteristics of an ore body change during the course of its extraction, notably metal grade, geometallurgy, ore domain/type and strip ratio. Mine planning decisions and mining activity in one time period effect all subsequent mining activities. Ore body heterogeneity and time interdependence of a depleting mineral asset require dynamic, integrated, simultaneous optimisation tools to assess performance strategies.

Static analyses and optimisation techniques which are dominant in mining operations and research, may indicate optima in a particular period of a mine's life but are likely to be unsuited to guiding life-of-mine value maximisation decisions.

# **6 APPENDICES**

# **APPENDIX 1: ENTERPRISE OPTIMISATION SETTINGS**

| Name                               | Globals                                                                                                                               |                      | Туре                      | Global                         |                                    |                |                         |          |                         |                       |               |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|--------------------------------|------------------------------------|----------------|-------------------------|----------|-------------------------|-----------------------|---------------|
| Limits                             | None                                                                                                                                  |                      | Costs                     |                                | al capital                         |                |                         |          |                         |                       |               |
| Notes                              | Discount ra                                                                                                                           | ate of 10%.          | Twenty P                  | eriods mod                     | elled. One mod                     | lel time peri  | od equals 1 y           | ear.     |                         |                       |               |
| Name                               | Marvin                                                                                                                                |                      | Туре                      | Materia                        | l Parcels                          |                |                         |          |                         |                       |               |
|                                    | Phase                                                                                                                                 | Rock Mass            | ; (t) Mine                | ralized (t)                    | Au (g)                             | Cu (t)         | Mineralized<br>Au grade |          |                         | lized mea<br>rade (%) | ۲             |
|                                    | 1                                                                                                                                     | 125,085,             | 105 1                     | 15,854,565                     | 62,366,310                         | 658,676        |                         | 0.54     |                         | 0.57                  | %             |
| Inventory                          | 2                                                                                                                                     | 114,880,             | 315                       | 83,814,610                     | 31,735,984                         | 526,377        |                         | 0.38     |                         | 0.63                  | %             |
|                                    | 3 125,165                                                                                                                             |                      | 040                       | 70,919,750                     | 22,980,678                         | 385,666        |                         | 0.32     |                         | 0.54                  | %             |
|                                    | 4                                                                                                                                     | 182,630,             | 663                       | 77,748,000                     | 21,527,303                         | 359,541        |                         | 0.28     |                         | 0.46                  | %             |
|                                    | 5                                                                                                                                     | 352,492,             | 415                       | 74,478,250                     | 19,253,823                         | 254,327        |                         | 0.26     |                         | 0.34                  | %             |
| Notes                              |                                                                                                                                       |                      |                           |                                | l on this proces<br>per cominution |                |                         | enches.  | Materia                 | al aggregate          | ed for Prober |
| Name                               | Mining                                                                                                                                |                      |                           | Туре                           | Pr                                 | ocedure        |                         |          |                         |                       |               |
| Limits                             | 60Mtpa.<br>12 benche                                                                                                                  |                      |                           |                                |                                    |                |                         |          |                         |                       |               |
|                                    | Variable C                                                                                                                            | osts:<br>iable Minir | ng Cost \$/1              |                                |                                    |                |                         | Powd     | ler Facto               | or kg/m3              |               |
|                                    |                                                                                                                                       |                      |                           | -                              | Γ                                  | WA             | ASTE                    |          | ORE                     |                       |               |
|                                    |                                                                                                                                       |                      |                           |                                | l l                                | 0              | .59                     | 0.62     | 2                       | 1.19                  |               |
|                                    | тс                                                                                                                                    | TAL VARIA            | BLE MININ                 | IG COST                        |                                    |                | 1.30                    |          | 1.44                    | 1.91                  |               |
| Costs                              | tonnes mo                                                                                                                             | ved                  |                           | d by proportion                | ning each pe                       | eriod cost ele |                         |          | plit by pow<br>or kg/m3 | der factor of         |               |
|                                    |                                                                                                                                       |                      |                           |                                |                                    | WASTE          |                         |          | ORE                     |                       |               |
|                                    | _                                                                                                                                     |                      |                           |                                |                                    | 0              | .59                     | 0.62     |                         | 1.19                  |               |
|                                    | IA .                                                                                                                                  | NNUAL MIN            | ING PERIC                 | D COST                         |                                    |                | \$38 .2m                | \$73     | .8m                     | \$73 .4m              |               |
| Notes                              | -                                                                                                                                     |                      | -                         |                                | 60Mtpa limit. P<br>d using 1.19PF  |                | )X1/OX2 can             | be mine  | d at 0.6                | 2PF and 1.            | 19PF.         |
| Name                               | #Discard                                                                                                                              |                      | Туре                      | Waste                          | Dump                               |                |                         |          |                         |                       |               |
| Limits                             | NA                                                                                                                                    |                      | Costs                     | As per (                       | ).59PF mining                      | costs abov     | е                       |          |                         |                       |               |
| Notes                              | Discard of                                                                                                                            | mining was           | te and Flo                | tation tails.                  |                                    |                |                         |          |                         |                       |               |
| Name                               | Mining Sto                                                                                                                            | ckpiles              | Туре                      | Stockpi                        |                                    |                |                         |          |                         |                       |               |
| Limits                             | 10Mt total Costs \$1/t rehandled                                                                                                      |                      |                           |                                |                                    |                |                         |          |                         |                       |               |
|                                    | Material stockpiled by material type (i.e. the aggregations described in the Marvin section). This means very little blending occurs. |                      |                           |                                |                                    |                |                         |          |                         |                       |               |
| Notes                              |                                                                                                                                       | ockpiled by          | material t                | ype (i.e. the                  | aggregations                       | described i    | n the Marvin            | section) | . This me               | eans very l           | ttie blending |
|                                    |                                                                                                                                       |                      | material t<br><b>Type</b> | pe (i.e. the<br>Proced         |                                    | described i    | n the Marvin :          | section) | . This me               | eans very l           | ttie biending |
| Name                               | occurs.                                                                                                                               |                      |                           | Proced<br>\$2.00/t             |                                    | described i    | n the Marvin s          | section) | . This me               | eans very l           |               |
| Name                               | occurs.<br>Heap Lead                                                                                                                  | :h                   | Туре                      | Proced<br>\$2.00/t             | lie                                | described i    |                         | Section) | . This me               | eans very l           | ttie bienaing |
| Notes<br>Name<br>Limits<br>Process | occurs.<br>Heap Lead<br>5Mtpa                                                                                                         | ch                   | Type<br>Costs             | Proceda<br>\$2.00/t<br>No Peri | lie                                |                |                         | Туре     | . This me               | eans very l           | ttie biending |
| Name                               | occurs.<br>Heap Lead<br>5Mtpa<br><u>Recovery</u>                                                                                      | e OX1                | Type<br>Costs             | Proceda<br>\$2.00/t<br>No Peri | ure<br>od Costs.                   |                | Rock                    | Туре     | . This me               | eans very l           |               |
| Name<br>Limits                     | occurs.<br>Heap Lead<br>5Mtpa<br><u>Recovery</u><br>Rock Typ                                                                          | e OX1                | Type<br>Costs             | Proced<br>\$2.00/t<br>No Peri  | od Costs.                          | 2 FI           | Rock                    | Type     | . This m                | eans very l           |               |

#### APPENDIX 1.1: ENTERPRISE MODEL CASE 8A: NO HIGH INTENSITY BLASTING

| Name                                         | Crusher/SAG                                                                                                                                                                                                                |                                                                                                                         | Type                                                                                                                        | Part of Plant Procedure                          |                                                                                                         |                                                                           |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|---------------------------------|
|                                              |                                                                                                                                                                                                                            |                                                                                                                         |                                                                                                                             |                                                  | Variable                                                                                                | e Mill Co                                                                 | ost                                                                                                                                                                                                                                               |                                                                                                                             |                                             |                                                                                           |                                                                                                                  | All PFs                  |                                 |                                 |
|                                              |                                                                                                                                                                                                                            |                                                                                                                         |                                                                                                                             |                                                  | -                                                                                                       |                                                                           | Wall Lift                                                                                                                                                                                                                                         | S                                                                                                                           |                                             | \$/t                                                                                      |                                                                                                                  |                          | 43                              |                                 |
|                                              | 276.6 GWh p                                                                                                                                                                                                                | ber                                                                                                                     |                                                                                                                             |                                                  |                                                                                                         | _                                                                         |                                                                                                                                                                                                                                                   | enance consi                                                                                                                | umables                                     |                                                                                           |                                                                                                                  |                          | 70                              |                                 |
| Limits                                       | annum acros                                                                                                                                                                                                                |                                                                                                                         | Costs                                                                                                                       |                                                  | Flotation Reagents \$/t                                                                                 |                                                                           |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           | 0.                                                                                                               | 55                       |                                 |                                 |
| Limits                                       | Crusher, SAC                                                                                                                                                                                                               |                                                                                                                         | Costs                                                                                                                       | 5                                                | Grinding Media \$/k                                                                                     |                                                                           |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           | Wh                                                                                                               |                          | 05                              |                                 |
|                                              | Ball kWh usa                                                                                                                                                                                                               | Ball kWh usage                                                                                                          |                                                                                                                             |                                                  | Re-lin                                                                                                  |                                                                           |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             | \$/k                                                                                      |                                                                                                                  |                          | 04                              |                                 |
|                                              |                                                                                                                                                                                                                            |                                                                                                                         |                                                                                                                             |                                                  |                                                                                                         | Power                                                                     |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             | \$/k                                                                                      |                                                                                                                  | 0.                       | 07                              |                                 |
|                                              |                                                                                                                                                                                                                            |                                                                                                                         |                                                                                                                             |                                                  | Period c                                                                                                | osts of                                                                   | \$20.38N                                                                                                                                                                                                                                          | 1 p.a.                                                                                                                      |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|                                              | Power Consu                                                                                                                                                                                                                | motion                                                                                                                  | k/Mb /+)                                                                                                                    | Pop                                              | wder Facto                                                                                              | r ka/m3                                                                   |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|                                              | Powerconst                                                                                                                                                                                                                 | Imption                                                                                                                 | KWYN/U                                                                                                                      | POL                                              | 1.19                                                                                                    | ir kg/mo                                                                  |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|                                              | (                                                                                                                                                                                                                          | Crusher                                                                                                                 |                                                                                                                             |                                                  |                                                                                                         | 0.7                                                                       |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|                                              |                                                                                                                                                                                                                            | SAG                                                                                                                     |                                                                                                                             |                                                  |                                                                                                         | 5.5                                                                       |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|                                              | B                                                                                                                                                                                                                          | all 75µm                                                                                                                |                                                                                                                             |                                                  |                                                                                                         | 12.4                                                                      |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
| Process                                      | Ba                                                                                                                                                                                                                         | all 106µm                                                                                                               |                                                                                                                             |                                                  |                                                                                                         | 10.3                                                                      |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|                                              |                                                                                                                                                                                                                            | all 150μm                                                                                                               |                                                                                                                             | _                                                |                                                                                                         | 7.7                                                                       |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|                                              | Ba                                                                                                                                                                                                                         | all 200µm                                                                                                               |                                                                                                                             |                                                  |                                                                                                         | 6.2                                                                       |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|                                              | SAG Through                                                                                                                                                                                                                | nput %                                                                                                                  |                                                                                                                             | Pov                                              | wder Facto                                                                                              | or kg/m3                                                                  |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|                                              | one model                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                             |                                                  | 1.19                                                                                                    |                                                                           |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|                                              | % of Crushe                                                                                                                                                                                                                | er Feed fe                                                                                                              | ed to SAG                                                                                                                   | 6                                                |                                                                                                         | 96.74%                                                                    |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
| Notes                                        | Power limit is                                                                                                                                                                                                             | s fully utli                                                                                                            | ised in r                                                                                                                   | nost v                                           | ears.                                                                                                   |                                                                           |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|                                              | Power limit is fully utlised in most years. Flotation Type Part of Plant Procedure                                                                                                                                         |                                                                                                                         |                                                                                                                             |                                                  |                                                                                                         |                                                                           |                                                                                                                                                                                                                                                   |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
| Name                                         | Flotation                                                                                                                                                                                                                  |                                                                                                                         | Туре                                                                                                                        |                                                  | Part of F                                                                                               | Plant Pro                                                                 | ocedure                                                                                                                                                                                                                                           |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
| Name<br>Limits                               | Flotation<br>25Mtpa                                                                                                                                                                                                        |                                                                                                                         | Type<br>Costs                                                                                                               | 5                                                | Part of F<br>\$2.851/k                                                                                  |                                                                           | ocedure                                                                                                                                                                                                                                           |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|                                              |                                                                                                                                                                                                                            | size P8                                                                                                                 | Costs                                                                                                                       |                                                  |                                                                                                         |                                                                           | ocedure                                                                                                                                                                                                                                           |                                                                                                                             |                                             |                                                                                           |                                                                                                                  |                          |                                 |                                 |
|                                              | 25Mtpa<br>Input particle                                                                                                                                                                                                   |                                                                                                                         | Costs                                                                                                                       |                                                  |                                                                                                         | Wh                                                                        |                                                                                                                                                                                                                                                   | Cu Recovery                                                                                                                 | /                                           |                                                                                           |                                                                                                                  |                          | Roc                             | :k Type                         |
|                                              | 25Mtpa<br>Input particle<br><u>Au Recovery</u>                                                                                                                                                                             | (                                                                                                                       | Costs<br>0 is var                                                                                                           | able.                                            | \$2.851/k                                                                                               | Wh<br>Roc                                                                 | ck Type                                                                                                                                                                                                                                           | Cu Recovery                                                                                                                 |                                             | 0.X2                                                                                      | TR1                                                                                                              | TR2                      |                                 | tk Type                         |
| Limits                                       | 25Mtpa<br>Input particle<br><u>Au Recovery</u><br>Input P80                                                                                                                                                                | OX1                                                                                                                     | Costs<br>0 is var                                                                                                           | able.                                            | \$2.851/k                                                                                               | Wh<br>Roc<br>FR1                                                          | ck Type<br>FR2                                                                                                                                                                                                                                    | Input P80                                                                                                                   | OX1                                         | OX2                                                                                       | TR1                                                                                                              | TR2                      | FR1                             | FR2                             |
|                                              | 25Mtpa<br>Input particle<br><u>Au Recovery</u><br>Input P80<br>75µm                                                                                                                                                        | 0X1<br>43%                                                                                                              | Costs<br>0 is var<br>OX2<br>43%                                                                                             | TR1<br>63%                                       | \$2.851/k                                                                                               | Wh<br>Rot<br>FR1<br>73%                                                   | ck Type<br>FR2<br>73%                                                                                                                                                                                                                             | Input P80<br>75µm                                                                                                           | OX1<br>53%                                  | 53%                                                                                       | 73%                                                                                                              | 73%                      | FR1<br>83%                      | FR2<br>83%                      |
| Limits                                       | 25Mtpa<br>Input particle<br><u>Au Recovery</u><br>Input P80<br>75μm<br>106μm                                                                                                                                               | 0X1<br>43%<br>40%                                                                                                       | Costs           0 is var           0X2           43%           40%                                                          | TR1<br>63%<br>60%                                | \$2.851/k                                                                                               | Wh<br>Rot<br>FR1<br>73%<br>70%                                            | ck Type<br>FR2<br>73%<br>70%                                                                                                                                                                                                                      | Input P80<br>75μm<br>106μm                                                                                                  | OX1<br>53%<br>50%                           | 53%<br>50%                                                                                | 73%<br>70%                                                                                                       | 73%<br>70%               | FR1<br>83%<br>80%               | FR2<br>83%<br>80%               |
| Limits                                       | 25Mtpa<br>Input particle<br><u>Au Recovery</u><br>Input P80<br>75µm<br>106µm<br>150µm                                                                                                                                      | OX1<br>43%<br>40%<br>38%                                                                                                | Ois var           0x2           43%           40%           38%                                                             | TR1<br>63%<br>60%<br>58%                         | \$2.851/k                                                                                               | Wh<br>FR1<br>73%<br>70%<br>68%                                            | ck Type<br>FR2<br>73%<br>70%<br>68%                                                                                                                                                                                                               | Input P80<br>75μm<br>106μm<br>150μm                                                                                         | OX1<br>53%<br>50%<br>48%                    | 53%<br>50%<br>48%                                                                         | 73%<br>70%<br>68%                                                                                                | 73%<br>70%<br>68%        | FR1<br>83%<br>80%<br>78%        | FR2<br>83%<br>80%<br>78%        |
| Limits                                       | 25Mtpa<br>Input particle<br><u>Au Recovery</u><br>Input P80<br>75μm<br>106μm                                                                                                                                               | 0X1<br>43%<br>40%                                                                                                       | Costs           0 is var           0X2           43%           40%                                                          | TR1<br>63%<br>60%                                | \$2.851/k                                                                                               | Wh<br>Rot<br>FR1<br>73%<br>70%                                            | ck Type<br>FR2<br>73%<br>70%                                                                                                                                                                                                                      | Input P80<br>75μm<br>106μm                                                                                                  | OX1<br>53%<br>50%                           | 53%<br>50%                                                                                | 73%<br>70%                                                                                                       | 73%<br>70%               | FR1<br>83%<br>80%               | FR2<br>83%<br>80%               |
| Limits<br>Process                            | 25Mtpa<br>Input particle<br><u>Au Recovery</u><br>Input P80<br>75µm<br>106µm<br>150µm<br>200µm                                                                                                                             | 2<br>0X1<br>43%<br>40%<br>38%<br>35%<br>nd 22Mt                                                                         | Ois var           0x2           43%           40%           38%           35%           pa - 25N                            | TR1<br>63%<br>60%<br>58%<br>55%                  | \$2.851/k                                                                                               | Wh<br>FR1<br>73%<br>68%<br>65%                                            | ck Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>Majority                                                                                                                                                                                            | Input P80<br>75µm<br>106µm<br>150µm<br>200µm                                                                                | OX1<br>53%<br>50%<br>48%<br>45%             | 53%<br>50%<br>48%<br>45%                                                                  | 73%<br>70%<br>68%<br>65%                                                                                         | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78%<br>75% |
| Limits<br>Process<br>Notes                   | 25Mtpa<br>Input particle<br>Au Recovery<br>Input P80<br>75µm<br>106µm<br>150µm<br>200µm<br>Feed is arour<br>increased us                                                                                                   | 2<br>OX1<br>43%<br>40%<br>38%<br>35%<br>nd 22Mt<br>ed of 15                                                             | Ох2<br>0 is var<br>0x2<br>43%<br>40%<br>38%<br>35%<br>ра - 25М<br>0µm the                                                   | TR1<br>63%<br>60%<br>58%<br>55%                  | \$2.851/k<br>6 63%<br>6 60%<br>6 58%<br>6 55%<br>6 55%<br>6 not a co<br>nal 8 yea                       | Wh<br>FR1<br>73%<br>68%<br>65%<br>nstraint<br>rs heav                     | ck Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>Majority                                                                                                                                                                                            | Input P80<br>75µm<br>106µm<br>150µm<br>200µm                                                                                | OX1<br>53%<br>50%<br>48%<br>45%             | 53%<br>50%<br>48%<br>45%                                                                  | 73%<br>70%<br>68%<br>65%                                                                                         | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78%<br>75% |
| Limits<br>Process<br>Notes                   | 25Mtpa<br>Input particle<br><u>Au Recovery</u><br>Input P80<br>75µm<br>106µm<br>150µm<br>200µm                                                                                                                             | 2<br>OX1<br>43%<br>40%<br>38%<br>35%<br>nd 22Mt<br>ed of 15                                                             | Ois var           0x2           43%           40%           38%           35%           pa - 25N                            | TR1<br>63%<br>60%<br>58%<br>55%                  | \$2.851/k<br>TR2<br>6 63%<br>6 60%<br>6 58%<br>6 55%<br>8 not a co<br>nal 8 yea<br>Procedu              | Wh<br>Rov<br>FR1<br>73%<br>68%<br>65%<br>nstraint.<br>rs heavi<br>re      | ck Type<br>FR2<br>73%<br>68%<br>65%<br>Majority<br>ily 75µm                                                                                                                                                                                       | Input P80<br>75μm<br>106μm<br>150μm<br>200μm<br>y grindsize ch                                                              | OX1<br>53%<br>50%<br>48%<br>45%             | 53%<br>50%<br>48%<br>45%                                                                  | 73%<br>70%<br>68%<br>65%                                                                                         | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78%<br>75% |
| Limits<br>Process                            | 25Mtpa<br>Input particle<br>Au Recovery<br>Input P80<br>75µm<br>106µm<br>150µm<br>200µm<br>Feed is arour<br>increased us                                                                                                   | 2<br>OX1<br>43%<br>40%<br>38%<br>35%<br>nd 22Mt<br>ed of 15                                                             | Ох2<br>0 is var<br>0x2<br>43%<br>40%<br>38%<br>35%<br>ра - 25М<br>0µm the                                                   | TR1<br>63%<br>60%<br>55%<br>Atpa is<br>on in fir | \$2.851/k<br>6 63%<br>6 60%<br>6 58%<br>6 55%<br>6 55%<br>6 not a co<br>nal 8 yea                       | Wh<br>FR1<br>73%<br>68%<br>65%<br>nstraint.<br>rs heavi<br>re<br>.oz Au ( | ck Type<br>FR2<br>73%<br>68%<br>65%<br>Majority<br>ily 75µm                                                                                                                                                                                       | Input P80<br>75μm<br>106μm<br>150μm<br>200μm<br>y grindsize ch                                                              | OX1<br>53%<br>50%<br>48%<br>45%             | 53%<br>50%<br>48%<br>45%                                                                  | 73%<br>70%<br>68%<br>65%                                                                                         | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78%<br>75% |
| Limits<br>Process<br>Notes<br>Name           | 25Mtpa<br>Input particle<br>Au Recovery<br>Input P80<br>75µm<br>106µm<br>150µm<br>200µm<br>Feed is arour<br>increased us<br>Downstream                                                                                     | 2<br>OX1<br>43%<br>40%<br>38%<br>35%<br>ad 22Mt<br>ed of 15<br>/ #Sell                                                  | 0 is var<br>0 is var<br>43%<br>40%<br>38%<br>35%<br>0µm the<br>Туре<br>Reve                                                 | TR1<br>63%<br>60%<br>55%<br>Atpa is<br>on in fir | \$2.851/k<br>TR2<br>6 63%<br>6 60%<br>6 58%<br>6 55%<br>8 not a co<br>nal 8 yea<br>Procedu<br>\$1000/tr | Wh<br>FR1<br>73%<br>68%<br>65%<br>nstraint.<br>rs heavi<br>re<br>.oz Au ( | ck Type<br>FR2<br>73%<br>68%<br>65%<br>Majority<br>ily 75µm                                                                                                                                                                                       | Input P80<br>75μm<br>106μm<br>150μm<br>200μm<br>y grindsize ch                                                              | OX1<br>53%<br>50%<br>48%<br>45%             | 53%<br>50%<br>48%<br>45%                                                                  | 73%<br>70%<br>68%<br>65%                                                                                         | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78%<br>75% |
| Limits<br>Process<br>Notes<br>Name           | 25Mtpa<br>Input particle<br>Au Recovery<br>Input P80<br>75µm<br>106µm<br>150µm<br>200µm<br>Feed is arour<br>increased us<br>Downstream                                                                                     | 2<br>OX1<br>43%<br>40%<br>38%<br>35%<br>ad 22Mt<br>ed of 15<br>/ #Sell                                                  | 0 is var<br>0 is var<br>43%<br>40%<br>38%<br>35%<br>0µm the<br>Туре<br>Reve                                                 | TR1<br>63%<br>60%<br>55%<br>Atpa is<br>on in fir | \$2.851/k<br>TR2<br>6 63%<br>6 60%<br>6 58%<br>6 55%<br>8 not a co<br>nal 8 yea<br>Procedu<br>\$1000/tr | Wh<br>FR1<br>73%<br>68%<br>65%<br>nstraint.<br>rs heavi<br>re<br>.oz Au ( | ck Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>Majority<br>ly 75μm<br>\$32.15/g                                                                                                                                                                    | Input P80<br>75μm<br>106μm<br>150μm<br>200μm<br>y grindsize ch                                                              | OX1<br>53%<br>50%<br>48%<br>45%             | 53%<br>50%<br>48%<br>45%                                                                  | 73%<br>70%<br>68%<br>65%<br>e - at 20                                                                            | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78%<br>75% |
| Limits<br>Process<br>Notes<br>Name           | 25Mtpa<br>Input particle<br>Au Recovery<br>Input P80<br>75µm<br>106µm<br>150µm<br>200µm<br>Feed is arour<br>increased us<br>Downstream<br>None                                                                             | 2<br>OX1<br>43%<br>40%<br>38%<br>35%<br>ad 22Mt<br>ed of 15<br>/ #Sell                                                  | 0 is var<br>0 is var<br>43%<br>40%<br>38%<br>35%<br>0µm the<br>Туре<br>Reve                                                 | TR1<br>63%<br>60%<br>55%<br>Atpa is<br>on in fir | \$2.851/k<br>TR2<br>6 63%<br>6 60%<br>6 58%<br>6 55%<br>8 not a co<br>nal 8 yea<br>Procedu<br>\$1000/tr | Wh<br>FR1<br>73%<br>68%<br>65%<br>nstraint.<br>rs heavi<br>re<br>.oz Au ( | ck Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>Majority<br>ily 75µm<br>\$32.15/c<br>A\$/C                                                                                                                                                          | Input P80<br>75µm<br>106µm<br>200µm<br>y grindsize ch                                                                       | OX1<br>53%<br>50%<br>48%<br>45%             | 53%<br>50%<br>48%<br>45%<br>over time                                                     | 73%<br>70%<br>68%<br>65%<br>e - at 20                                                                            | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78%<br>75% |
| Limits<br>Process<br>Notes<br>Name           | 25Mtpa<br>Input particle<br>Au Recovery<br>Input P80<br>75µm<br>106µm<br>150µm<br>200µm<br>Feed is arour<br>increased us<br>Downstream<br>None                                                                             | 2<br>0X1<br>43%<br>40%<br>38%<br>35%<br>nd 22Mt<br>ed of 15<br>/ #Sell<br>am Cost:                                      | Ois var           0 is var           0 is var           0 38%           35%           0µm the           Type           Reve | TR1<br>63%<br>60%<br>55%<br>Atpa is<br>on in fir | \$2.851/k<br>TR2<br>6 63%<br>6 60%<br>6 58%<br>6 55%<br>8 not a co<br>nal 8 yea<br>Procedu<br>\$1000/tr | Wh<br>FR1<br>73%<br>68%<br>65%<br>nstraint.<br>rs heavi<br>re<br>.oz Au ( | ck Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>Majority<br>ily 75µm<br>\$32.15/c<br>\$32.15/c<br>A\$/C                                                                                                                                             | Input P80<br>75µm<br>106µm<br>150µm<br>200µm<br>y grindsize ch                                                              | OX1<br>53%<br>50%<br>48%<br>45%             | 53%<br>50%<br>48%<br>45%<br>over time<br><u>AII PFs</u><br>0.5                            | 73%<br>70%<br>68%<br>65%<br>9 - at 20                                                                            | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78%<br>75% |
| Limits<br>Process<br>Notes<br>Name<br>Limits | 25Mtpa<br>Input particle<br>Au Recovery<br>Input P80<br>75µm<br>106µm<br>150µm<br>200µm<br>Feed is arouu<br>increased us<br>Downstream<br>None<br><u>Downstrea</u><br>Pipe<br>Truck                                        | 2<br>OX1<br>43%<br>40%<br>38%<br>35%<br>nd 22Mtr<br>ed of 15<br>/ #Sell<br>am Costs<br>Shippin                          | Ois var           0 is var           0 is var           0 38%           35%           0µm the           Type           Reve | TR1<br>63%<br>60%<br>55%<br>Atpa is<br>on in fir | \$2.851/k<br>TR2<br>6 63%<br>6 60%<br>6 58%<br>6 55%<br>8 not a co<br>nal 8 yea<br>Procedu<br>\$1000/tr | Wh<br>FR1<br>73%<br>68%<br>65%<br>nstraint.<br>rs heavi<br>re<br>.oz Au ( | ck Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>Majority<br>ily 75μm<br>\$32.15/c<br>\$32.15/c<br>AS/C<br>AS/C                                                                                                                                      | Input P80<br>75µm<br>106µm<br>200µm<br>y grindsize ch<br>g)<br>on Tonne<br>on Tonne<br>on Tonne                             | OX1<br>53%<br>50%<br>48%<br>45%             | 53%<br>50%<br>48%<br>45%<br>over time<br><u>AII PFs</u><br>0.5<br>30.0                    | 73%<br>70%<br>68%<br>65%<br>9 - at 20                                                                            | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78%<br>75% |
| Limits<br>Process<br>Notes<br>Name<br>Limits | 25Mtpa<br>Input particle<br>Au Recovery<br>Input P80<br>75µm<br>106µm<br>150µm<br>200µm<br>Feed is arour<br>increased us<br>Downstream<br>None<br><u>Downstream</u><br>None<br><u>Downstreat</u><br>Freight -<br>Smelter ( | 2<br>OX1<br>43%<br>40%<br>38%<br>35%<br>nd 22Mt<br>ed of 15<br>/ #Sell<br>am Costs<br>Shippin<br>Cost                   | 0 is var<br>0 is var<br>43%<br>40%<br>38%<br>35%<br>0µm the<br>7ype<br>Reve                                                 | TR1<br>63%<br>60%<br>55%<br>Atpa is<br>on in fir | \$2.851/k<br>TR2<br>6 63%<br>6 60%<br>6 58%<br>6 55%<br>8 not a co<br>nal 8 yea<br>Procedu<br>\$1000/tr | Wh<br>FR1<br>73%<br>68%<br>65%<br>nstraint.<br>rs heavi<br>re<br>.oz Au ( | ck Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>Majority<br>ily 75μm<br>\$32.15/g<br>\$32.15/g<br>\$32.5/g<br>AS/C<br>AS/C                                                                                                                          | Input P80<br>75µm<br>106µm<br>200µm<br>y grindsize ch<br>g)<br>on Tonne<br>on Tonne<br>on Tonne<br>on Tonne                 | OX1<br>53%<br>50%<br>48%<br>45%<br>nanges o | 53%<br>50%<br>48%<br>45%<br>over time<br>0.5<br>30.0<br>200.0<br>200.0                    | 73%<br>70%<br>68%<br>65%<br>9 - at 20<br>0<br>0<br>0<br>0                                                        | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78%<br>75% |
| Limits<br>Process<br>Notes<br>Name           | 25Mtpa<br>Input particle<br>Au Recovery<br>Input P80<br>75µm<br>106µm<br>150µm<br>200µm<br>Feed is arour<br>increased us<br>Downstream<br>None<br><u>Downstrea</u><br>Pipe<br>Truck<br>Freight -<br>Smelter (<br>Smelter)  | 2<br>OX1<br>43%<br>40%<br>38%<br>35%<br>nd 22Mt<br>ed of 15<br>/ #Sell<br>am Costs<br>Shippin<br>Cost<br>Ref Cha        | 0 is var<br>0 is var<br>43%<br>40%<br>38%<br>35%<br>0µm the<br>7ype<br>Reve                                                 | TR1<br>63%<br>60%<br>55%<br>Atpa is<br>on in fir | \$2.851/k<br>TR2<br>6 63%<br>6 60%<br>6 58%<br>6 55%<br>8 not a co<br>nal 8 yea<br>Procedu<br>\$1000/tr | Wh<br>FR1<br>73%<br>68%<br>65%<br>nstraint.<br>rs heavi<br>re<br>.oz Au ( | k Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>Majority<br>ily 75μm<br>\$32.15/ς<br>\$32.15/ς<br>\$32.15/ς<br>\$32.15/ς<br>\$32.15/ς<br>\$32.15/ς<br>\$32.15/ς                                                                                      | Input P80<br>75µm<br>106µm<br>200µm<br>y grindsize ch<br>g)<br>on Tonne<br>on Tonne<br>on Tonne<br>on Tonne<br>u Recov Tonn | OX1<br>53%<br>50%<br>48%<br>45%<br>nanges o | 53%<br>50%<br>48%<br>45%<br>over time<br>All PFs<br>0.5<br>30.0<br>200.0<br>200.0<br>95.0 | 73%<br>70%<br>68%<br>65%<br>e - at 20<br>0<br>0<br>0<br>0<br>0<br>0                                              | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78%<br>75% |
| Limits<br>Process<br>Notes<br>Name<br>Limits | 25Mtpa<br>Input particle<br>Au Recovery<br>Input P80<br>75µm<br>106µm<br>150µm<br>200µm<br>Feed is arour<br>increased us<br>Downstream<br>None<br><u>Downstream</u><br>None<br><u>Downstreat</u><br>Freight -<br>Smelter ( | 2<br>OX1<br>43%<br>40%<br>38%<br>35%<br>nd 22Mti<br>ed of 15<br>/ #Sell<br>am Cost:<br>Shippin<br>Cost<br>Ref Cha<br>ge | 0 is var<br>0 is var<br>43%<br>40%<br>38%<br>35%<br>0µm the<br>7ype<br>Reve                                                 | TR1<br>63%<br>60%<br>55%<br>Atpa is<br>on in fir | \$2.851/k<br>TR2<br>6 63%<br>6 60%<br>6 58%<br>6 55%<br>8 not a co<br>nal 8 yea<br>Procedu<br>\$1000/tr | Wh<br>FR1<br>73%<br>68%<br>65%<br>nstraint.<br>rs heavi<br>re<br>.oz Au ( | ck Type           FR2           73%           70%           68%           65%           Majority           \$32.15/g           \$32.15/g           AS/C           AS/C           AS/C           AS/C           AS/C           AS/C           AS/C | Input P80<br>75µm<br>106µm<br>200µm<br>y grindsize ch<br>g)<br>on Tonne<br>on Tonne<br>on Tonne<br>on Tonne                 | OX1<br>53%<br>48%<br>45%<br>nanges o        | 53%<br>50%<br>48%<br>45%<br>over time<br>0.5<br>30.0<br>200.0<br>200.0                    | 73%<br>70%<br>68%<br>65%<br>e - at 20<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78%<br>75% |

Table 3: Model Inputs – Case 8A, Conventional Blasting Intensity

|                                                                      | Globals                                                                                                                        |                                                                                                                                                                                                                              | IVne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Global                                                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                     |                                                                                                                            |                                                                                                                              |                                                                                                                                       |                                 |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Name<br>Limits                                                       | None                                                                                                                           |                                                                                                                                                                                                                              | Type<br>Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                     | al capital                                                                                                                                                                                                                                |                                                                                                                     |                                                                                                                            |                                                                                                                              |                                                                                                                                       |                                 |
| Notes                                                                |                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     | lelled. One mod                                                                                                                                                                                                                           | lel time peri                                                                                                       | od equals 1                                                                                                                | year.                                                                                                                        |                                                                                                                                       |                                 |
| Name                                                                 | Marvin                                                                                                                         |                                                                                                                                                                                                                              | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                     | al Parcels                                                                                                                                                                                                                                |                                                                                                                     |                                                                                                                            |                                                                                                                              |                                                                                                                                       |                                 |
|                                                                      |                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                     | Mar                                                                                                                        |                                                                                                                              | Minster                                                                                                                               |                                 |
|                                                                      | Dharas                                                                                                                         | Deck Marcal                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | million of (a)                                                                                                                                                                                      | Au (=)                                                                                                                                                                                                                                    | C (P)                                                                                                               | Mineraliz<br>Au grad                                                                                                       |                                                                                                                              | Mineralized<br>Cu grade                                                                                                               |                                 |
|                                                                      |                                                                                                                                | Rock Mass                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ralized (t)                                                                                                                                                                                         | Au (g)                                                                                                                                                                                                                                    | Cu (t)                                                                                                              | Augrau                                                                                                                     |                                                                                                                              | cu grade                                                                                                                              |                                 |
|                                                                      | 1                                                                                                                              | 125,085,1                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15,854,565                                                                                                                                                                                          | 62,366,310                                                                                                                                                                                                                                | 658,676                                                                                                             |                                                                                                                            | 0.54                                                                                                                         |                                                                                                                                       | 0.57%                           |
| nventory                                                             |                                                                                                                                |                                                                                                                                                                                                                              | 83,814,610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31,735,984                                                                                                                                                                                          | 526,377                                                                                                                                                                                                                                   |                                                                                                                     | 0.38                                                                                                                       |                                                                                                                              | 0.63%                                                                                                                                 |                                 |
|                                                                      | 3                                                                                                                              |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70,919,750                                                                                                                                                                                          | 22,980,678                                                                                                                                                                                                                                | 385,666                                                                                                             |                                                                                                                            | 0.32                                                                                                                         |                                                                                                                                       | 0.54%                           |
|                                                                      | 4                                                                                                                              | 182,630,6                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77,748,000                                                                                                                                                                                          | 21,527,303                                                                                                                                                                                                                                | 359,541                                                                                                             |                                                                                                                            | 0.28                                                                                                                         |                                                                                                                                       | 0.46%                           |
|                                                                      | 5                                                                                                                              | 352,492,4                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74,478,250                                                                                                                                                                                          | 19,253,823                                                                                                                                                                                                                                | 254,327                                                                                                             |                                                                                                                            | 0.26                                                                                                                         |                                                                                                                                       | 0.34%                           |
| Notes                                                                |                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     | d on this proces<br>per cominution                                                                                                                                                                                                        | •                                                                                                                   |                                                                                                                            | benches.                                                                                                                     | Material aggr                                                                                                                         | egated for Pro                  |
| Name                                                                 | Mining                                                                                                                         |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Туре                                                                                                                                                                                                | Pr                                                                                                                                                                                                                                        | ocedure                                                                                                             |                                                                                                                            |                                                                                                                              |                                                                                                                                       |                                 |
|                                                                      | 90Mtpa.                                                                                                                        |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .,,,,,,                                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                     |                                                                                                                            |                                                                                                                              |                                                                                                                                       |                                 |
| Limits                                                               | 12 benches                                                                                                                     |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                     |                                                                                                                            |                                                                                                                              |                                                                                                                                       |                                 |
|                                                                      | Variable Co                                                                                                                    | sts:                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                     |                                                                                                                            |                                                                                                                              |                                                                                                                                       |                                 |
|                                                                      | Variabl                                                                                                                        | e Mining Co                                                                                                                                                                                                                  | st \$/t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                     |                                                                                                                            | Powder                                                                                                                       | Factor kg/m3                                                                                                                          |                                 |
|                                                                      |                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     | WASTE                                                                                                                                                                                                                                     |                                                                                                                     | 0                                                                                                                          | RE                                                                                                                           |                                                                                                                                       |                                 |
|                                                                      |                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     | 0.59                                                                                                                                                                                                                                      | 0.62                                                                                                                | 1.19                                                                                                                       | 1.79                                                                                                                         | 2.46                                                                                                                                  |                                 |
|                                                                      | TOTAL                                                                                                                          | VARIABLE N                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OST                                                                                                                                                                                                 | 1.30                                                                                                                                                                                                                                      | 1.44                                                                                                                | 1.91                                                                                                                       | 2.4                                                                                                                          | 1 2.96                                                                                                                                |                                 |
|                                                                      |                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                     |                                                                                                                            | Powder                                                                                                                       | Factor kg/m3                                                                                                                          |                                 |
|                                                                      |                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     | ORE                                                                                                                                                                                                                                       |                                                                                                                     |                                                                                                                            |                                                                                                                              |                                                                                                                                       |                                 |
|                                                                      |                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                     |                                                                                                                            |                                                                                                                              | E E 7                                                                                                                                 |                                 |
|                                                                      |                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     | 3.11                                                                                                                                                                                                                                      | 3.5                                                                                                                 | 4.28                                                                                                                       | 4.67                                                                                                                         | 5.57                                                                                                                                  |                                 |
| Costs                                                                |                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     | 3.11<br>3.34<br>ed by proportion                                                                                                                                                                                                          | 3.59                                                                                                                | 4.20                                                                                                                       | 4.5                                                                                                                          | 6 5.24                                                                                                                                | powder facto                    |
| Costs                                                                | Period Cos<br>tonnes mov                                                                                                       | ts: Net Perio                                                                                                                                                                                                                | od Cost i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s determine                                                                                                                                                                                         | 3.34<br>ad by proportion                                                                                                                                                                                                                  | 3.59<br>ning each p                                                                                                 | 4.20<br>eriod cost e<br>Of                                                                                                 | 4.5<br>Ilement by<br>Powder                                                                                                  | 6 5.24<br>the % split by<br>Factor kg/m3                                                                                              | powder facto                    |
| Costs                                                                | Period Cos<br>tonnes mov                                                                                                       | ts: Net Perio<br>red<br>Costs (\$p.a.)                                                                                                                                                                                       | before p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s determine                                                                                                                                                                                         | 3.34<br>ad by proportion<br>bca<br>WASTE<br>0.59                                                                                                                                                                                          | 3.59<br>hing each p<br>0.62                                                                                         | 4.20<br>eriod cost e<br>Of<br>1.19                                                                                         | 4.5<br>Ilement by<br>Powder<br>RE<br>1.79                                                                                    | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46                                                                                      | powder facto                    |
| Costs                                                                | Period Cos<br>tonnes mov                                                                                                       | ts: Net Perio<br>ed                                                                                                                                                                                                          | before p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s determine                                                                                                                                                                                         | 3.34<br>ad by proportion                                                                                                                                                                                                                  | 3.59<br>ning each p                                                                                                 | 4.20<br>eriod cost e<br>Of                                                                                                 | 4.5<br>Ilement by<br>Powder<br>RE<br>1.79<br>\$73 .2n                                                                        | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>1 \$73 .1m                                                                        | r powder facto                  |
| Costs                                                                | Period Cos<br>tonnes mov                                                                                                       | ts: Net Perio<br>red<br>Costs (\$p.a.)                                                                                                                                                                                       | before p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s determine                                                                                                                                                                                         | 3.34<br>ad by proportion<br>WASTE<br>0.59<br>\$38 .2m                                                                                                                                                                                     | 3.59<br>hing each p<br>0.62                                                                                         | 4.20<br>eriod cost e<br>Of<br>1.19                                                                                         | 4.5<br>Ilement by<br>Powder<br>RE<br>1.79<br>\$73 .2n                                                                        | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46                                                                                      | powder facto                    |
| Costs                                                                | Period Cos<br>tonnes mov                                                                                                       | ts: Net Perio<br>red<br>Costs (\$p.a.)                                                                                                                                                                                       | before p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s determine                                                                                                                                                                                         | 3.34<br>ed by proportion<br>0.59<br>\$38 .2m                                                                                                                                                                                              | 3.59<br>hing each p<br>0.62<br>\$73 .8m                                                                             | 4.20<br>eriod cost e<br>Of<br>1.19<br>\$73 .4m                                                                             | 4.5<br>Ilement by<br>Powder<br>RE<br>1.79<br>\$73 .2n<br>Powder                                                              | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>1 \$73 .1m<br>Factor kg/m3                                                        | powder facto                    |
| Costs                                                                | Period Cos<br>tonnes mov<br>Period d<br>ANNU                                                                                   | ts: Net Peric<br>red<br>Costs (\$p.a.)                                                                                                                                                                                       | before p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s determine                                                                                                                                                                                         | 3.34<br>ed by proportion<br>WASTE<br>0.59<br>\$38 .2m<br>ORE<br>3.11                                                                                                                                                                      | 3.59<br>ning each p<br>0.62<br>\$73 .8m<br>3.5                                                                      | 4.20<br>eriod cost e<br>Of<br>1.19<br>\$73 .4m<br>4.28                                                                     | 4.5<br>Powder<br>RE<br>1.79<br>\$73 .2n<br>Powder<br>4.67                                                                    | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>\$73 .1m<br>Factor kg/m3<br>5.57                                                  | powder facto                    |
| Costs                                                                | Period Cos<br>tonnes mov<br>Period d<br>ANNU                                                                                   | ts: Net Perio<br>red<br>Costs (\$p.a.)                                                                                                                                                                                       | before p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s determine                                                                                                                                                                                         | 3.34<br>ed by proportion<br>0.59<br>\$38 .2m                                                                                                                                                                                              | 3.59<br>hing each p<br>0.62<br>\$73 .8m                                                                             | 4.20<br>eriod cost e<br>Of<br>1.19<br>\$73 .4m                                                                             | 4.5<br>Ilement by<br>Powder<br>RE<br>1.79<br>\$73 .2n<br>Powder                                                              | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>\$73 .1m<br>Factor kg/m3<br>5.57                                                  | powder facto                    |
| Costs<br>Notes                                                       | Period Cos<br>tonnes mov<br>Period d<br>ANNU<br>ANNU<br>Mining is co<br>higher. Proc                                           | ts: Net Perio<br>red<br>Costs (\$p.a.)<br>AL MINING F<br>AL MINING F                                                                                                                                                         | before p<br>before p<br>reriod co<br>reriod co<br>y tonnag<br>/TR2/FR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s determine                                                                                                                                                                                         | 3.34<br>ad by proportion<br>0.59<br>\$38 .2m<br>ORE<br>3.11<br>\$73 .1m<br>in later phase of<br>be mined using                                                                                                                            | 3.59<br>hing each pr<br>0.62<br>\$73 .8m<br>3.5<br>\$73 .0m<br>developmen                                           | 4.20<br>eriod cost e<br>0f<br>1.19<br>\$73 .4m<br>4.28<br>\$73 .0m<br>t. Processe                                          | 4.5<br>lement by<br>Powder<br>RE<br>1.79<br>\$73 .2n<br>Powder<br>4.67<br>\$73 .0n                                           | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>n \$73 .1m<br>Factor kg/m3<br>5.57<br>n \$72 .9m<br>2 can be min                  | ed at 0.62PF a                  |
| Notes<br>Name                                                        | Period Cos<br>tonnes mov<br>Period d<br>ANNU<br>ANNU<br>ANNU<br>Mining is cc<br>higher. Proo<br>destined for<br>#Discard       | ts: Net Perio<br>red<br>Costs (Sp.a.)<br>AL MINING F<br>AL MINING F<br>Onstrained b<br>cessed TR1<br>r Mill is blast                                                                                                         | verifield at 3.5<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s determine<br>ro-rata allo<br>DST<br>DST<br>e limit only<br>1/FR2 can<br>50 or 4.28P<br>Waste                                                                                                      | A 3.34<br>ad by proportion<br>WASTE<br>0.59<br>\$38 .2m<br>ORE<br>3.11<br>\$73 .1m<br>in later phase of<br>be mined using<br>F<br>Dump                                                                                                    | 3.59<br>hing each p<br>0.62<br>\$73 .8m<br>3.5<br>\$73 .0m<br>developmen<br>1.19PF an                               | 4.20<br>eriod cost e<br>0f<br>1.19<br>\$73 .4m<br>4.28<br>\$73 .0m<br>t. Processe<br>d higher. In                          | 4.5<br>lement by<br>Powder<br>RE<br>1.79<br>\$73 .2n<br>Powder<br>4.67<br>\$73 .0n                                           | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>n \$73 .1m<br>Factor kg/m3<br>5.57<br>n \$72 .9m<br>2 can be min                  | ed at 0.62PF a                  |
| Notes<br>Name<br>.imits                                              | Period Cos<br>tonnes mov<br>Period d<br>ANNU<br>ANNU<br>ANNU<br>Mining is cc<br>higher. Pro-<br>destined for<br>#Discard<br>NA | ts: Net Perio<br>red<br>Costs (Sp.a.)<br>AL MINING P<br>AL MINING P<br>Onstrained b<br>cessed TR1<br>r Mill is blast                                                                                                         | PERIOD CC<br>PERIOD CC<br>VERIOD CC<br>V tonnag<br>VTR2/FR<br>ted at 3.5<br>Type<br>Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ost<br>e limit only<br>1/FR2 can<br>50 or 4.28P<br>Waste<br>As per                                                                                                                                  | A 3.34<br>ad by proportion<br>WASTE<br>0.59<br>\$38 .2m<br>ORE<br>3.11<br>\$73 .1m<br>in later phase of<br>be mined using<br>F<br>Dump<br>0.59PF mining                                                                                   | 3.59<br>hing each p<br>0.62<br>\$73 .8m<br>3.5<br>\$73 .0m<br>developmen<br>1.19PF an                               | 4.20<br>eriod cost e<br>0f<br>1.19<br>\$73 .4m<br>4.28<br>\$73 .0m<br>t. Processe<br>d higher. In                          | 4.5<br>lement by<br>Powder<br>RE<br>1.79<br>\$73 .2n<br>Powder<br>4.67<br>\$73 .0n                                           | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>n \$73 .1m<br>Factor kg/m3<br>5.57<br>n \$72 .9m<br>2 can be min                  | ed at 0.62PF a                  |
| Notes<br>Name<br>Limits<br>Notes                                     | Period Cos<br>tonnes mov<br>Period d<br>ANNU<br>ANNU<br>ANNU<br>Mining is cc<br>higher. Pro-<br>destined for<br>#Discard of d  | ts: Net Perio<br>red<br>Costs (Sp.a.)<br>AL MINING F<br>AL MINING F<br>Onstrained b<br>cessed TR1<br>r Mill is blast                                                                                                         | PERIOD CC<br>PERIOD CC<br>PERIOD CC<br>Y tonnag<br>/TR2/FR<br>ted at 3.5<br><b>Type</b><br><b>Costs</b><br>a and Flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e limit only<br>1/FR2 can<br>50 or 4.28P<br>Waste<br>As per<br>station tails.                                                                                                                       | A 3.34<br>ad by proportion<br>WASTE<br>0.59<br>\$38 .2m<br>ORE<br>3.11<br>\$73 .1m<br>in later phase of<br>be mined using<br>F<br>Dump<br>0.59PF mining                                                                                   | 3.59<br>hing each p<br>0.62<br>\$73 .8m<br>3.5<br>\$73 .0m<br>developmen<br>1.19PF an                               | 4.20<br>eriod cost e<br>0f<br>1.19<br>\$73 .4m<br>4.28<br>\$73 .0m<br>t. Processe<br>d higher. In                          | 4.5<br>lement by<br>Powder<br>RE<br>1.79<br>\$73 .2n<br>Powder<br>4.67<br>\$73 .0n                                           | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>n \$73 .1m<br>Factor kg/m3<br>5.57<br>n \$72 .9m<br>2 can be min                  | ed at 0.62PF a                  |
| Notes<br>Name<br>Limits<br>Notes<br>Name                             | Period Cos<br>tonnes mov<br>Period d<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANN                            | ts: Net Perio<br>red<br>Costs (Sp.a.)<br>AL MINING F<br>AL MINING F<br>Onstrained b<br>cessed TR1<br>r Mill is blast<br>mining waste<br>kpiles                                                                               | PERIOD CC<br>PERIOD CC<br>VERIOD CC<br>V tonnag<br>VTR2/FR<br>ted at 3.5<br>Type<br>Costs<br>e and Flo<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s determine<br>ro-rata allo<br>DST<br>e limit only<br>1/FR2 can<br>50 or 4.28P<br>Waste<br>As per<br>station tails.<br>Stockpi                                                                      | 3.34<br>ad by proportion<br>wASTE<br>0.59<br>\$38 .2m<br>ORE<br>3.11<br>\$73 .1m<br>in later phase of<br>be mined using<br>F<br>Dump<br>0.59PF mining                                                                                     | 3.59<br>hing each p<br>0.62<br>\$73 .8m<br>3.5<br>\$73 .0m<br>developmen<br>1.19PF an                               | 4.20<br>eriod cost e<br>0f<br>1.19<br>\$73 .4m<br>4.28<br>\$73 .0m<br>t. Processe<br>d higher. In                          | 4.5<br>lement by<br>Powder<br>RE<br>1.79<br>\$73 .2n<br>Powder<br>4.67<br>\$73 .0n                                           | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>n \$73 .1m<br>Factor kg/m3<br>5.57<br>n \$72 .9m<br>2 can be min                  | ed at 0.62PF a                  |
| Notes<br>Name<br>Limits<br>Notes<br>Name                             | Period Cos<br>tonnes mov<br>Period I<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANN                            | ts: Net Perior<br>red<br>Costs (Sp.a.)<br>AL MINING P<br>AL MINING P<br>Onstrained b<br>cessed TR1<br>r Mill is blast<br>mining waste<br>kpiles                                                                              | PERIOD CC<br>PERIOD CC<br>PERIOC | ost<br>cost<br>cost<br>cost<br>cost<br>cost<br>cost<br>cost<br>c                                                                                                                                    | 3.34<br>ad by proportion<br>waste<br>0.59<br>\$38 .2m<br>ORE<br>3.11<br>\$73 .1m<br>in later phase of<br>be mined using<br>F<br>Dump<br>0.59PF mining<br><br>le<br>nandled                                                                | 3.59<br>hing each p<br>0.62<br>\$73 .8m<br>3.5<br>\$73 .0m<br>developmen<br>1.19PF an                               | 4.20<br>eriod cost e<br>0f<br>1.19<br>\$73 .4m<br>4.28<br>\$73 .0m<br>t. Processe<br>d higher. In<br>e                     | 4.5<br>lement by<br>Powder<br>KE<br>1.79<br>\$73 .2n<br>Powder<br>4.67<br>\$73 .0n<br>cd OX1/OX<br>run results               | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>\$73 .1m<br>Factor kg/m3<br>5.57<br>1 \$72 .9m<br>2 can be min<br>5 majority of F | ed at 0.62PF a<br>R/TR material |
| Notes<br>Name<br>Limits<br>Notes<br>Name<br>Limits<br>Notes          | Period Cos<br>tonnes mov<br>Period I<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANN                            | ts: Net Perior<br>red                                                                                                                                                                                                        | ERIOD CO<br>PERIOD CO<br>PERIOD CO<br>TR2/FR<br>ted at 3.5<br>Type<br>Costs<br>a and Flo<br>Type<br>Costs<br>naterial t<br>it LOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s determine<br>ro-rata allo<br>DST<br>DST<br>e limit only<br>1/FR2 can<br>50 or 4.28P<br>Waste<br>As per<br>vtation tails.<br>Stockpi<br>\$1/t ref<br>ype (i.e. the                                 | 3.34<br>ad by proportion<br>waste<br>0.59<br>\$38 .2m<br>ORE<br>3.11<br>\$73 .1m<br>in later phase of<br>be mined using<br>F<br>Dump<br>0.59PF mining<br><br>lle<br>aandled<br>e aggregations                                             | 3.59<br>hing each p<br>0.62<br>\$73 .8m<br>3.5<br>\$73 .0m<br>developmen<br>1.19PF an                               | 4.20<br>eriod cost e<br>0f<br>1.19<br>\$73 .4m<br>4.28<br>\$73 .0m<br>t. Processe<br>d higher. In<br>e                     | 4.5<br>lement by<br>Powder<br>KE<br>1.79<br>\$73 .2n<br>Powder<br>4.67<br>\$73 .0n<br>cd OX1/OX<br>run results               | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>\$73 .1m<br>Factor kg/m3<br>5.57<br>1 \$72 .9m<br>2 can be min<br>5 majority of F | ed at 0.62PF a<br>R/TR material |
| Notes<br>Vame<br>Limits<br>Notes<br>Vame<br>Limits<br>Notes          | Period Cos<br>tonnes mov<br>Period d<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANN                            | ts: Net Perior<br>red                                                                                                                                                                                                        | VERIOD CC<br>VERIOD CC<br>VERIOD CC<br>VI tonnag<br>VI TR2/FR<br>ted at 3.5<br>Type<br>Costs<br>a and Flo<br>Type<br>Costs<br>naterial t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ost<br>cost<br>cost<br>cost<br>cost<br>cost<br>cost<br>cost<br>c                                                                                                                                    | 3.34<br>ad by proportion<br>0.59<br>\$38 .2m<br>ORE<br>3.11<br>\$73 .1m<br>in later phase of<br>be mined using<br>F<br>Dump<br>0.59PF mining<br><br>ile<br>nandled<br>a aggregations<br>ure                                               | 3.59<br>hing each p<br>0.62<br>\$73 .8m<br>3.5<br>\$73 .0m<br>developmen<br>1.19PF an                               | 4.20<br>eriod cost e<br>0f<br>1.19<br>\$73 .4m<br>4.28<br>\$73 .0m<br>t. Processe<br>d higher. In<br>e                     | 4.5<br>lement by<br>Powder<br>KE<br>1.79<br>\$73 .2n<br>Powder<br>4.67<br>\$73 .0n<br>cd OX1/OX<br>run results               | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>\$73 .1m<br>Factor kg/m3<br>5.57<br>1 \$72 .9m<br>2 can be min<br>5 majority of F | ed at 0.62PF a<br>R/TR material |
| Notes<br>Limits<br>Votes<br>Vame<br>Limits<br>Notes<br>Notes         | Period Cos<br>tonnes mov<br>Period I<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANN                            | ts: Net Perior<br>red<br>Costs (Sp.a.)<br>AL MINING F<br>AL MINING F<br>AL MINING F<br>Onstrained b<br>cessed TR1<br>r Mill is blass<br>mining waste<br>ckpiles<br>ckpiles                                                   | ERIOD CO<br>PERIOD CO<br>PERIOD CO<br>TR2/FR<br>ted at 3.5<br>Type<br>Costs<br>a and Flo<br>Type<br>Costs<br>naterial t<br>it LOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s determine<br>ro-rata allo<br>DST<br>DST<br>e limit only<br>1/FR2 can<br>50 or 4.28P<br>Waste<br>As per<br>station tails.<br>Stockpi<br>\$1/t ref<br>ype (i.e. the<br>Proced<br>\$2.00/t           | 3.34<br>ad by proportion<br>0.59<br>\$38 .2m<br>ORE<br>3.11<br>\$73 .1m<br>in later phase of<br>be mined using<br>F<br>Dump<br>0.59PF mining<br><br>ile<br>nandled<br>a aggregations<br>ure                                               | 3.59<br>hing each p<br>0.62<br>\$73 .8m<br>3.5<br>\$73 .0m<br>developmen<br>1.19PF an                               | 4.20<br>eriod cost e<br>0f<br>1.19<br>\$73 .4m<br>4.28<br>\$73 .0m<br>t. Processe<br>d higher. In<br>e                     | 4.5<br>lement by<br>Powder<br>KE<br>1.79<br>\$73 .2n<br>Powder<br>4.67<br>\$73 .0n<br>cd OX1/OX<br>run results               | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>\$73 .1m<br>Factor kg/m3<br>5.57<br>1 \$72 .9m<br>2 can be min<br>5 majority of F | ed at 0.62PF a<br>R/TR material |
| Notes<br>Limits<br>Votes<br>Vame<br>Limits<br>Notes<br>Notes         | Period Cos<br>tonnes mov<br>Period d<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANN                            | ts: Net Perior<br>red<br>Costs (Sp.a.)<br>AL MINING F<br>AL MINING F<br>AL MINING F<br>Onstrained b<br>cessed TR1<br>r Mill is blass<br>mining waste<br>ckpiles<br>ckpiles                                                   | before p<br>before p<br>reriod co<br>reriod c | s determine<br>ro-rata allo<br>DST<br>DST<br>e limit only<br>1/FR2 can<br>50 or 4.28P<br>Waste<br>As per<br>station tails.<br>Stockpi<br>\$1/t ref<br>ype (i.e. the<br>Proced<br>\$2.00/t           | 3.34<br>ad by proportion<br>waste<br>0.59<br>\$38.2m<br>ORE<br>3.11<br>\$73.1m<br>in later phase of<br>be mined using<br>F<br>Dump<br>0.59PF mining<br>Ile<br>nandled<br>a aggregations<br>ure                                            | 3.59<br>hing each p<br>0.62<br>\$73 .8m<br>3.5<br>\$73 .0m<br>developmen<br>1.19PF an                               | 4.20<br>eriod cost e<br>0f<br>1.19<br>\$73 .4m<br>4.28<br>\$73 .0m<br>t. Processe<br>d higher. In<br>e                     | 4.5<br>lement by<br>Powder<br>1.79<br>\$73 .2n<br>Powder<br>4.67<br>\$73 .0n<br>ed OX1/OX<br>run results                     | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>\$73 .1m<br>Factor kg/m3<br>5.57<br>1 \$72 .9m<br>2 can be min<br>5 majority of F | ed at 0.62PF a<br>R/TR material |
| Notes<br>Name<br>Limits<br>Notes<br>Name<br>Limits<br>Name<br>Limits | Period Cos<br>tonnes mov<br>Period d<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANN                            | ts: Net Perior<br>red<br>Costs (Sp.a.)<br>AL MINING P<br>AL MINING P<br>Onstrained b<br>cessed TR1<br>r Mill is blast<br>mining waste<br>kpiles<br>ckpiled by r<br>er throughou<br>n                                         | VERIOD CC<br>VERIOD CC<br>VERIOD CC<br>VERIOD CC<br>V tonnag<br>(TR2/FR<br>ted at 3.5<br>Type<br>Costs<br>a and Flo<br>Type<br>Costs<br>naterial t<br>it LOM<br>Type<br>Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s determine<br>ro-rata allo<br>DST<br>DST<br>e limit only<br>1/FR2 can<br>50 or 4.28P<br>Waste<br>As per<br>vtation tails.<br>Stockpi<br>\$1/t ref<br>ype (i.e. the<br>Proced<br>\$2.00/t<br>No Per | 3.34<br>ad by proportion<br>0.59<br>\$38.2m<br>ORE<br>3.11<br>\$73.1m<br>in later phase of<br>be mined using<br>F<br>Dump<br>0.59PF mining<br><br>ille<br>mandled<br>a aggregations<br>ure                                                | 3.59<br>hing each p<br>0.62<br>\$73 .8m<br>3.5<br>\$73 .0m<br>developmen<br>1.19PF an<br>costs abov<br>described i  | 4.20<br>eriod cost e<br>0f<br>1.19<br>\$73 .4m<br>4.28<br>\$73 .0m<br>t. Processe<br>d higher. In<br>e<br>e                | 4.5<br>lement by<br>Powder<br>E<br>1.79<br>\$73 .2n<br>Powder<br>4.67<br>\$73 .0n<br>d OX1/OX<br>run results                 | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>\$73 .1m<br>Factor kg/m3<br>5.57<br>1 \$72 .9m<br>2 can be min<br>5 majority of F | ed at 0.62PF a<br>R/TR material |
| Notes<br>Name<br>Limits<br>Notes<br>Limits<br>Notes<br>Notes         | Period Cos<br>tonnes mov<br>Period I<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANN                            | ts: Net Perior<br>red<br>Costs (Sp.a.)<br>AL MINING F<br>AL MINING F<br>AL MINING F<br>AL MINING F<br>Onstrained b<br>cessed TR1<br>r Mill is blast<br>mining waste<br>skpiles<br>bockpiled by r<br>er throughou<br>n<br>OX1 | PERIOD CC<br>PERIOD CC                                                                                                                                                                                                                                                     | s determine<br>ro-rata allo<br>DST<br>e limit only<br>1/FR2 can<br>50 or 4.28P<br>Waste<br>As per<br>vtation tails.<br>Stockpi<br>\$1/t ref<br>ype (i.e. the<br>Proced<br>\$2.00/t<br>No Per        | 3.34       ad by proportion       bca       wASTE       0.59       \$38.2m       ORE       3.11       \$73.1m       in later phase of be mined using P       Dump       0.59PF mining             aggregations       ure       iod Costs. | 3.59<br>hing each p<br>0.62<br>\$73 .8m<br>3.5<br>\$73 .0m<br>developmen<br>11.19PF an<br>costs abov<br>described i | 4.20<br>eriod cost e<br>0f<br>1.19<br>\$73 .4m<br>4.28<br>\$73 .0m<br>t. Processe<br>d higher. In<br>e<br>e<br>n the Marvi | 4.5<br>lement by<br>Powder<br>E<br>1.79<br>\$73 .2n<br>Powder<br>4.67<br>\$73 .0n<br>ed OX1/OX<br>run results<br>n section). | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>\$73 .1m<br>Factor kg/m3<br>5.57<br>1 \$72 .9m<br>2 can be min<br>5 majority of F | ed at 0.62PF a<br>R/TR material |
| Notes<br>Name<br>Limits<br>Notes<br>Name<br>Limits<br>Name<br>Limits | Period Cos<br>tonnes mov<br>Period d<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANNU<br>ANN                            | ts: Net Perior<br>red<br>Costs (Sp.a.)<br>AL MINING P<br>AL MINING P<br>Onstrained b<br>cessed TR1<br>r Mill is blast<br>mining waste<br>kpiles<br>ckpiled by r<br>er throughou<br>n                                         | PERIOD CC<br>PERIOD CC                                                                                                                                                                                                                                                     | s determine<br>ro-rata allo<br>DST<br>DST<br>e limit only<br>1/FR2 can<br>50 or 4.28P<br>Waste<br>As per<br>vtation tails.<br>Stockpi<br>\$1/t ref<br>ype (i.e. the<br>Proced<br>\$2.00/t<br>No Per | 3.34<br>ad by proportion<br>0.59<br>\$38.2m<br>ORE<br>3.11<br>\$73.1m<br>in later phase of<br>be mined using<br>F<br>Dump<br>0.59PF mining<br><br>ille<br>mandled<br>a aggregations<br>ure                                                | 3.59<br>hing each p<br>0.62<br>\$73 .8m<br>3.5<br>\$73 .0m<br>developmen<br>1.19PF an<br>costs abov<br>described i  | 4.20<br>eriod cost e<br>0f<br>1.19<br>\$73 .4m<br>4.28<br>\$73 .0m<br>t. Processe<br>d higher. In<br>e<br>e                | 4.5<br>lement by<br>Powder<br>E<br>1.79<br>\$73 .2n<br>Powder<br>4.67<br>\$73 .0n<br>d OX1/OX<br>run results                 | 6 5.24<br>the % split by<br>Factor kg/m3<br>2.46<br>\$73 .1m<br>Factor kg/m3<br>5.57<br>1 \$72 .9m<br>2 can be min<br>5 majority of F | ed at 0.62PF a<br>R/TR material |

#### APPENDIX 1.2: ENTERPRISE MODEL CASE 9C: OPTIMISED HIGH INTENSITY BLASTING

| Name                                                 | Crusher/SAG/Ba                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                    |                                           |                                                                                                         |                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                   |                                                                                            |                                                                                       |                          |                                 |                          |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------|---------------------------------|--------------------------|
|                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                    |                                           | Variable Mill Cost                                                                                      |                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                   |                                                                                            |                                                                                       | All PFs                  |                                 |                          |
|                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                    |                                           |                                                                                                         | gs Dam V                                          |                                                                                                               | s                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                   | \$/t                                                                                       |                                                                                       | 1.4                      | 13                              |                          |
|                                                      | 276.6 GWh per                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                    | Other                                     | process                                                                                                 | & maint                                           | enance                                                                                                        | e consur                                                                                                                                                                                                                                                                                                                                                                                                                                | nables                                        | \$/t                              |                                                                                            | 0.                                                                                    | 70                       |                                 |                          |
| Limits                                               | annum across total<br>Crusher, SAG and<br>Ball kWh usage                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Costs                                                                                                                                              |                                           | Flotation Reagents \$/t                                                                                 |                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                   |                                                                                            | 0.5                                                                                   | 55                       |                                 |                          |
| Linito                                               |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Costs                                                                                                                                              |                                           | Grindi                                                                                                  | ng Media                                          | a                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                   | \$/k                                                                                       | Wh                                                                                    | 0.0                      | 05                              |                          |
|                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                    |                                           | Re-lin                                                                                                  | ing                                               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                   | \$/k                                                                                       | Wh                                                                                    | 0.0                      | 04                              |                          |
|                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                    |                                           | Direct                                                                                                  | Power                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                   | \$/k                                                                                       | Wh                                                                                    | 0.0                      | 07                              |                          |
|                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                    |                                           | Period c                                                                                                | osts of \$                                        | 20.38N                                                                                                        | 1 p.a.                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |                                   |                                                                                            |                                                                                       |                          |                                 |                          |
|                                                      | Devere Comment                                                                                                                                                                                                                                            | 4: (l.)A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1- (+)                                                                                                                                            |                                           |                                                                                                         |                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                   |                                                                                            |                                                                                       | Davida                   |                                 | - ( 2                    |
|                                                      | Power Consumpt                                                                                                                                                                                                                                            | tion (KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>vnz (</u> )                                                                                                                                     | ſ                                         | 1.19                                                                                                    | 1.79                                              | 2.4                                                                                                           | 16                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.11                                          | 3.5                               | 5                                                                                          | 4.28                                                                                  | 4.67                     | r Factor kg                     |                          |
|                                                      | (                                                                                                                                                                                                                                                         | Crusher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                           | 0.7                                                                                                     |                                                   | 0.6                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                           |                                   | 0.4                                                                                        | 0.4                                                                                   | 0.                       |                                 | 0.3                      |
|                                                      |                                                                                                                                                                                                                                                           | SAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |                                           | 5.5                                                                                                     |                                                   | 5.0                                                                                                           | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.9                                           |                                   | 3.7                                                                                        | 3.3                                                                                   | 3.                       |                                 | 3.0                      |
| -                                                    |                                                                                                                                                                                                                                                           | all 75μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                    |                                           | 12.4                                                                                                    |                                                   | 1.1<br>9.2                                                                                                    | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.                                            |                                   | 8.2                                                                                        | 7.4<br>6.1                                                                            | 7.                       |                                 | 6.6                      |
| Process                                              |                                                                                                                                                                                                                                                           | all 106μr<br>all 150μr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                    |                                           | 10.3                                                                                                    |                                                   | 9.2<br>5.9                                                                                                    | 8.1<br>6.1                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.2                                           |                                   | 6.8<br>5.1                                                                                 | 4.6                                                                                   | 5.                       |                                 | 5.5<br>4.1               |
|                                                      |                                                                                                                                                                                                                                                           | all 200µr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |                                           | 6.2                                                                                                     |                                                   | 5.5                                                                                                           | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.4                                           |                                   | 4.1                                                                                        | 3.7                                                                                   | 3.                       |                                 | 3.3                      |
|                                                      | SAG Throughput                                                                                                                                                                                                                                            | : %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |                                           |                                                                                                         |                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                   |                                                                                            |                                                                                       | Powde                    | r Factor kį                     | g/m3                     |
|                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                    |                                           | 1.19                                                                                                    | 1.79                                              | 2.4                                                                                                           | 16                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.11                                          | 3.5                               |                                                                                            | 4.28                                                                                  | 4.67                     | 5.57                            | 7                        |
|                                                      | % of Crushe                                                                                                                                                                                                                                               | er Feed f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fed to SA                                                                                                                                          | G                                         | 96.74%                                                                                                  | 95.12                                             | 2% 9                                                                                                          | 3.49%                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94.80%                                        | 9                                 | 3.76%                                                                                      | 92.72%                                                                                | 91.689                   | 6 90                            | .64%                     |
|                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                    |                                           |                                                                                                         |                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                   |                                                                                            |                                                                                       |                          |                                 |                          |
| Notes                                                | Power limit is ful                                                                                                                                                                                                                                        | Ily utlis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sed in r                                                                                                                                           | nosty                                     | ears.                                                                                                   |                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                   |                                                                                            |                                                                                       |                          |                                 |                          |
|                                                      | Power limit is ful<br>Flotation                                                                                                                                                                                                                           | Illy utlis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sed in r<br><b>Type</b>                                                                                                                            | nost y                                    | ears.<br>Part of P                                                                                      | Plant Pro                                         | cedure                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                   |                                                                                            |                                                                                       |                          |                                 |                          |
| Name                                                 |                                                                                                                                                                                                                                                           | Illy utlis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                    |                                           |                                                                                                         |                                                   | cedure                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                   |                                                                                            |                                                                                       |                          |                                 |                          |
| Name                                                 | Flotation                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Type<br>Costs                                                                                                                                      | 5                                         | Part of P                                                                                               |                                                   | cedure                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                   |                                                                                            |                                                                                       |                          |                                 |                          |
| Name                                                 | Flotation<br>25Mtpa                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Type<br>Costs                                                                                                                                      | 5                                         | Part of P                                                                                               | Wh                                                | cedure<br>k Type                                                                                              | <u>Cu Re</u>                                                                                                                                                                                                                                                                                                                                                                                                                            | covery                                        |                                   |                                                                                            |                                                                                       |                          | Roc                             | :k Type                  |
| Name                                                 | Flotation<br>25Mtpa<br>Input particle siz                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Type<br>Costs                                                                                                                                      | 5                                         | Part of P                                                                                               | Wh                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                         | covery                                        | OX1                               | OX2                                                                                        | TR1                                                                                   | TR2                      | Roc<br>FR1                      | ck Type<br>FR2           |
| Name<br>Limits                                       | Flotation<br>25Mtpa<br>Input particle siz<br>Au Recovery<br>Input P80 0                                                                                                                                                                                   | ze P80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type<br>Costs<br>) is vari                                                                                                                         | s<br>able.                                | Part of P<br>\$2.851/k                                                                                  | :Wh<br>Roci                                       | k Type                                                                                                        | Inpu                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | OX1<br>53%                        | OX2<br>53%                                                                                 | TR1<br>73%                                                                            | TR2<br>73%               |                                 |                          |
| Name<br>Limits                                       | Flotation<br>25Mtpa<br>Input particle siz<br>Au Recovery<br>Input P80 0<br>75µm                                                                                                                                                                           | ze P80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type<br>Costs<br>) is vari                                                                                                                         | able.                                     | Part of P<br>\$2.851/k<br>TR2<br>6 63%                                                                  | Wh<br>Roc<br>FR1                                  | k Type<br>FR2                                                                                                 | Inpu<br>75                                                                                                                                                                                                                                                                                                                                                                                                                              | it P80                                        |                                   |                                                                                            |                                                                                       |                          | FR1                             | FR2                      |
| Name<br>Limits                                       | Flotation<br>25Mtpa<br>Input particle siz<br>Au Recovery<br>Input P80 0<br>75µm<br>106µm                                                                                                                                                                  | ze P80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type<br>Costs<br>) is vari                                                                                                                         | able.<br>TR1<br>639                       | Part of P<br>\$2.851/k<br>TR2<br>6 63%<br>6 60%                                                         | Roc<br>FR1<br>73%                                 | k Type<br>FR2<br>73%                                                                                          | Inpu<br>75j<br>106                                                                                                                                                                                                                                                                                                                                                                                                                      | ut P80<br>μm                                  | 53%                               | 53%                                                                                        | 73%                                                                                   | 73%                      | FR1<br>83%                      | FR2<br>83%               |
| Name<br>Limits                                       | Flotation<br>25Mtpa<br>Input particle siz<br>Au Recovery<br>Input P80 0<br>75µm 4<br>106µm 4                                                                                                                                                              | ze P80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type<br>Costs<br>) is vari<br>OX2<br>43%<br>40%                                                                                                    | 5<br>able.<br>TR1<br>639<br>609           | Part of P<br>\$2.851/k<br>5663%<br>660%<br>658%                                                         | Roci<br>FR1<br>73%<br>70%                         | k Type<br>FR2<br>73%<br>70%                                                                                   | Inpu<br>751<br>106                                                                                                                                                                                                                                                                                                                                                                                                                      | ut P80<br>μm<br>iμm                           | 53%<br>50%                        | 53%<br>50%                                                                                 | 73%<br>70%                                                                            | 73%<br>70%               | FR1<br>83%<br>80%               | FR2<br>83%<br>80%        |
| Name<br>Limits<br>Process                            | Flotation<br>25Mtpa<br>Input particle siz<br>Au Recovery<br>Input P80 0<br>75µm<br>106µm                                                                                                                                                                  | ZE P80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type           Costs           0 is vari           0 X2           43%           40%           38%           35%                                    | able.<br>TR1<br>639<br>609<br>589<br>559  | Part of P<br>\$2.851/k<br>6 63%<br>6 60%<br>6 58%<br>6 55%                                              | Wh<br>Roc<br>FR1 0<br>73%<br>68%<br>65%           | k Type<br>FR2<br>73%<br>70%<br>68%<br>65%                                                                     | Inpu<br>751<br>106<br>150<br>200                                                                                                                                                                                                                                                                                                                                                                                                        | it P80<br>μm<br>μm<br>μm<br>μm                | 53%<br>50%<br>48%<br>45%          | 53%<br>50%<br>48%<br>45%                                                                   | 73%<br>70%<br>68%<br>65%                                                              | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78% |
| Name<br>Limits<br>Process<br>Notes                   | Flotation<br>25Mtpa<br>Input particle siz<br>Au Recovery<br>Input P80 0<br>75µm 4<br>106µm 4<br>150µm 4                                                                                                                                                   | ze P80<br>0X1<br>43%<br>40%<br>38%<br>35%<br>tpa limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type           Costs           0 is vari           0 X2           43%           40%           38%           35%                                    | able.<br>TR1<br>639<br>609<br>589<br>559  | Part of P<br>\$2.851/k<br>6 63%<br>6 60%<br>6 58%<br>6 55%                                              | Roct<br>FR1<br>73%<br>68%<br>65%<br>key con       | k Type<br>FR2<br>73%<br>70%<br>68%<br>65%                                                                     | Inpu<br>751<br>106<br>150<br>200                                                                                                                                                                                                                                                                                                                                                                                                        | it P80<br>μm<br>μm<br>μm<br>μm                | 53%<br>50%<br>48%<br>45%          | 53%<br>50%<br>48%<br>45%                                                                   | 73%<br>70%<br>68%<br>65%                                                              | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78% |
| Name<br>Limits<br>Process<br>Notes<br>Name           | Flotation<br>25Mtpa<br>Input particle siz<br>Au Recovery<br>Input P80 0<br>75µm 4<br>106µm 4<br>150µm 4<br>200µm 4<br>Feed is at 25Mtp                                                                                                                    | ze P80<br>0X1<br>43%<br>40%<br>38%<br>35%<br>tpa limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type           Costs           0 is varied           0 x2           43%           40%           38%           35%                                  | TR1<br>639<br>609<br>589<br>559<br>gh pov | Part of P<br>\$2.851/k<br>53%<br>6 63%<br>6 60%<br>6 55%<br>6 55%<br>6 55%                              | Roc<br>FR1<br>73%<br>68%<br>65%<br>key cons<br>re | k Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>straint.                                                         | Inpu<br>751<br>106<br>150<br>200<br>Primari                                                                                                                                                                                                                                                                                                                                                                                             | it P80<br>μm<br>μm<br>μm<br>μm                | 53%<br>50%<br>48%<br>45%          | 53%<br>50%<br>48%<br>45%                                                                   | 73%<br>70%<br>68%<br>65%                                                              | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78% |
| Name<br>Limits<br>Process<br>Notes<br>Name           | Flotation<br>25Mtpa<br>Input particle siz<br>Au Recovery<br>Input P80 0<br>75µm<br>106µm<br>150µm<br>200µm<br>Feed is at 25Mtp<br>Downstream / #                                                                                                          | 222 P80<br>2001<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>20 | Type           Costs           ) is varie           0X2           43%           40%           38%           35%           it, thous           Type | TR1<br>639<br>609<br>589<br>559<br>gh pov | Part of P<br>\$2.851/k<br>53%<br>6 63%<br>6 63%<br>6 55%<br>6 55%<br>ver is the<br>Procedu<br>\$1000/tr | Roc<br>FR1<br>73%<br>68%<br>65%<br>key cons<br>re | k Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>straint.                                                         | Inpu<br>751<br>106<br>150<br>200<br>Primari                                                                                                                                                                                                                                                                                                                                                                                             | it P80<br>μm<br>μm<br>μm<br>μm                | 53%<br>50%<br>48%<br>45%<br>used  | 53%<br>50%<br>48%<br>45%                                                                   | 73%<br>70%<br>68%<br>65%<br>d with <1                                                 | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78% |
| Name<br>Limits<br>Process<br>Notes<br>Name           | Flotation<br>25Mtpa<br>Input particle siz<br><u>Au Recovery</u><br>Input P80 O<br>75µm<br>106µm<br>200µm<br>Feed is at 25Mtg<br>Downstream / #3                                                                                                           | 222 P80<br>2001<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>20 | Type           Costs           ) is varie           0X2           43%           40%           38%           35%           it, thous           Type | TR1<br>639<br>609<br>589<br>559<br>gh pov | Part of P<br>\$2.851/k<br>53%<br>6 63%<br>6 63%<br>6 55%<br>6 55%<br>ver is the<br>Procedu<br>\$1000/tr | Roc<br>FR1<br>73%<br>68%<br>65%<br>key cons<br>re | k Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>straint.                                                         | Inpu<br>751<br>106<br>150<br>200<br>Primari                                                                                                                                                                                                                                                                                                                                                                                             | it P80<br>μm<br>μμm<br>μμm<br>μμm<br>ily 75μm | 53%<br>50%<br>48%<br>45%<br>used  | 53%<br>50%<br>48%<br>45%<br>for grind                                                      | 73%<br>70%<br>68%<br>65%<br>d with <1                                                 | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78% |
| Name<br>Limits<br>Process<br>Notes<br>Name           | Flotation 25Mtpa Input particle siz Au Recovery Input P80 0 75µm 106µm 150µm 200µm Feed is at 25Mtp Downstream / #3 None Downstream Pipe                                                                                                                  | 222 P80<br>2001<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>20 | Type           Costs           ) is varie           0X2           43%           40%           38%           35%           it, thous           Type | TR1<br>639<br>609<br>589<br>559<br>gh pov | Part of P<br>\$2.851/k<br>53%<br>6 63%<br>6 63%<br>6 55%<br>6 55%<br>ver is the<br>Procedu<br>\$1000/tr | Roc<br>FR1<br>73%<br>68%<br>65%<br>key cons<br>re | k Type<br>FR2<br>73%<br>68%<br>65%<br>straint.<br>332.15/g                                                    | Inpu<br>751<br>106<br>150<br>200<br>Primari                                                                                                                                                                                                                                                                                                                                                                                             | nt P80                                        | 53%<br>50%<br>48%<br>45%<br>used  | 53%<br>50%<br>48%<br>for grind<br>All PFs<br>0.5                                           | 73%<br>70%<br>68%<br>65%<br>d with <1                                                 | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78% |
| Name<br>Limits<br>Process<br>Notes<br>Name           | Flotation 25Mtpa Input particle siz Au Recovery Input P80 0 75µm 106µm 150µm 200µm Feed is at 25Mtt Downstream Pipe Truck                                                                                                                                 | ze P80<br>DX1 43%<br>40% 38%<br>35%<br>tpa limi<br>Sell<br>Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Type<br>Costs<br>) is vari<br>43%<br>40%<br>38%<br>35%<br>it, thous<br>Type<br>Reve                                                                | TR1<br>639<br>609<br>589<br>559<br>gh pov | Part of P<br>\$2.851/k<br>53%<br>6 63%<br>6 63%<br>6 55%<br>6 55%<br>ver is the<br>Procedu<br>\$1000/tr | Roc<br>FR1<br>73%<br>68%<br>65%<br>key cons<br>re | k Type<br>FR2<br>73%<br>68%<br>65%<br>straint. 1<br>632.15/c<br>AS/C0                                         | Inpu<br>751<br>106<br>150<br>200<br>Primari                                                                                                                                                                                                                                                                                                                                                                                             | nt P80                                        | 53%<br>50%<br>48%<br>45%<br>used  | 53%<br>50%<br>48%<br>45%<br>for grind<br>All PFs<br>0.3                                    | 73%<br>70%<br>68%<br>65%<br>d with <1                                                 | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78% |
| Name<br>Limits<br>Process<br>Notes<br>Name<br>Limits | Flotation 25Mtpa Input particle siz Au Recovery Input P80 0 75µm 106µm 150µm 200µm Feed is at 25Mtg Downstream / #3 None Downstream Pipe Truck Freight - Shi                                                                                              | ze P80<br>DX1 43%<br>40% 38%<br>35% pa limi<br>Sell<br>Costs<br>ipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type<br>Costs<br>) is vari<br>43%<br>40%<br>38%<br>35%<br>it, thous<br>Type<br>Reve                                                                | TR1<br>639<br>609<br>589<br>559<br>gh pov | Part of P<br>\$2.851/k<br>53%<br>6 63%<br>6 63%<br>6 55%<br>6 55%<br>ver is the<br>Procedu<br>\$1000/tr | Roc<br>FR1<br>73%<br>68%<br>65%<br>key cons<br>re | k Type<br>FR2<br>73%<br>68%<br>65%<br>straint. I<br>632.15/c<br>AS/C0<br>AS/C0                                | Inpu<br>751<br>106<br>150<br>200<br>Primari<br>3)                                                                                                                                                                                                                                                                                                                                                                                       | nne                                           | 53%<br>50%<br>48%<br>45%<br>used  | 53%<br>50%<br>48%<br>45%<br>for grind<br>All PFs<br>0.9<br>30.0<br>200.0                   | 73%<br>70%<br>68%<br>65%<br>d with < <sup>1</sup><br>50<br>50                         | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78% |
| Name<br>Limits<br>Process<br>Notes<br>Name<br>Limits | Flotation<br>25Mtpa<br>Input particle siz<br><u>Au Recovery</u><br>Input P80 0<br>75µm<br>106µm<br>200µm<br>Feed is at 25Mtr<br>Downstream / #3<br>None<br><u>Downstream</u><br><u>Pipe</u><br><u>Truck</u><br><u>Freight - Shi</u><br><u>Smelter Cos</u> | ze P80<br>DX1 43%<br>40% 38%<br>35%<br>tipa limi<br>Sell<br>Costs<br>tipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Costs<br>costs<br>is vari<br>43%<br>40%<br>38%<br>35%<br>it, thoug<br>Reve                                                                         | TR1<br>639<br>609<br>589<br>559<br>gh pov | Part of P<br>\$2.851/k<br>53%<br>6 63%<br>6 63%<br>6 55%<br>6 55%<br>ver is the<br>Procedu<br>\$1000/tr | Roc<br>FR1<br>73%<br>68%<br>65%<br>key cons<br>re | k Type<br>FR2<br>73%<br>68%<br>65%<br>straint. 1<br>632.15/g<br>AS/C0<br>AS/C0<br>AS/C0                       | Inpu<br>75,<br>106<br>150<br>200<br>Primari<br>a)<br>on Ton<br>on Ton<br>on Ton                                                                                                                                                                                                                                                                                                                                                         | nne                                           | 53%<br>50%<br>48%<br>45%<br>used  | 53%<br>50%<br>48%<br>45%<br>for grind<br>All PFs<br>0.1<br>30.0<br>200.0                   | 73%<br>70%<br>68%<br>65%<br>d with <1                                                 | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78% |
| Name<br>Limits<br>Process<br>Notes<br>Name<br>Limits | Flotation 25Mtpa Input particle siz Au Recovery Input P80 0 75µm 106µm 150µm Feed is at 25Mtp Downstream / #3 None Downstream Pipe Truck Freight - Shi Smelter Cos Smelter/Ref                                                                            | 222 P80<br>DX1 43%<br>40%<br>38%<br>35%<br>40%<br>38%<br>35%<br>10%<br>10%<br>10%<br>10%<br>10%<br>10%<br>10%<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Costs<br>costs<br>is vari<br>43%<br>40%<br>38%<br>35%<br>it, thoug<br>Reve                                                                         | TR1<br>639<br>609<br>589<br>559<br>gh pov | Part of P<br>\$2.851/k<br>53%<br>6 63%<br>6 63%<br>6 55%<br>6 55%<br>ver is the<br>Procedu<br>\$1000/tr | Roc<br>FR1<br>73%<br>68%<br>65%<br>key cons<br>re | k Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>straint.<br>332.15/g<br>AS/C0<br>AS/C0<br>AS/C0                  | Inpu<br>75j<br>106<br>150<br>200<br>Primari<br>on Tor<br>on Tor<br>on Tor<br>on Tor<br>u Reco                                                                                                                                                                                                                                                                                                                                           | it P80                                        | 53%<br>50%<br>48%<br>45%<br>used  | 53%<br>50%<br>48%<br>45%<br>for grind<br>All PFs<br>0.1<br>30.0<br>200.0<br>200.0<br>200.0 | 73% 70% 68% 65% d with <1 50 50 50 50 50 50 50 50 50 50 50 50 50                      | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78% |
| Name<br>Limits<br>Process<br>Notes<br>Name<br>Limits | Flotation<br>25Mtpa<br>Input particle siz<br><u>Au Recovery</u><br>Input P80 0<br>75µm<br>106µm<br>200µm<br>Feed is at 25Mtr<br>Downstream / #3<br>None<br><u>Downstream</u><br><u>Pipe</u><br><u>Truck</u><br><u>Freight - Shi</u><br><u>Smelter Cos</u> | 222 P80<br>DX1 43%<br>40%<br>38%<br>35%<br>40%<br>38%<br>35%<br>10%<br>10%<br>10%<br>10%<br>10%<br>10%<br>10%<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Costs<br>costs<br>is vari<br>43%<br>40%<br>38%<br>35%<br>it, thoug<br>Reve                                                                         | TR1<br>639<br>609<br>589<br>559<br>gh pov | Part of P<br>\$2.851/k<br>53%<br>6 63%<br>6 63%<br>6 55%<br>6 55%<br>ver is the<br>Procedu<br>\$1000/tr | Roc<br>FR1<br>73%<br>68%<br>65%<br>key cons<br>re | k Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>straint.<br>32.15/g<br>AS/C0<br>AS/C0<br>AS/C0<br>AS/C0<br>AS/C0 | Inpu<br>75j<br>106<br>150<br>200<br>Primari<br>on Tor<br>on Tor | it P80                                        | 53%<br>50%<br>48%<br>45%<br>uused | 53%<br>50%<br>48%<br>45%<br>for grind<br>All PFs<br>0.1<br>30.0<br>200.0                   | 73%<br>70%<br>68%<br>65%<br>d with <1<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% | FR2<br>83%<br>80%<br>78% |
| Limits<br>Process                                    | Flotation 25Mtpa Input particle siz Au Recovery Input P80 0 75µm 106µm 150µm Feed is at 25Mtp Downstream / #3 None Downstream Pipe Truck Freight - Shi Smelter Cos Smelter/Ref                                                                            | 222 P80<br>DX1 43%<br>40%<br>38%<br>35%<br>40%<br>38%<br>35%<br>10%<br>10%<br>10%<br>10%<br>10%<br>10%<br>10%<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Costs<br>costs<br>is vari<br>43%<br>40%<br>38%<br>35%<br>it, thoug<br>Reve                                                                         | TR1<br>639<br>609<br>589<br>559<br>gh pov | Part of P<br>\$2.851/k<br>53%<br>6 63%<br>6 63%<br>6 55%<br>6 55%<br>ver is the<br>Procedu<br>\$1000/tr | Roc<br>FR1<br>73%<br>68%<br>65%<br>key cons<br>re | k Type<br>FR2<br>73%<br>70%<br>68%<br>65%<br>straint.<br>332.15/g<br>AS/C0<br>AS/C0<br>AS/C0                  | Inpu<br>75j<br>106<br>150<br>200<br>Primari<br>on Tor<br>on Tor<br>on Tor<br>on Tor<br>u Reco                                                                                                                                                                                                                                                                                                                                           | it P80                                        | 53%<br>50%<br>48%<br>45%<br>used  | 53%<br>50%<br>48%<br>45%<br>for grind<br>All PFs<br>0.1<br>30.0<br>200.0<br>200.0<br>200.0 | 73% 70% 68% 65% d with <1 50 50 50 50 50 50 50 50 50 50 50 50 50                      | 73%<br>70%<br>68%<br>65% | FR1<br>83%<br>80%<br>78%<br>75% |                          |

Table 4: Model Inputs – Case 9C, Optimized High Intensity Blasting

# **APPENDIX 2: GLOBAL MODEL SETTINGS**

| Global Setting | Units              | Value | Commentary                                  |
|----------------|--------------------|-------|---------------------------------------------|
| Exchange rate  | US\$/A\$           | 0.75  |                                             |
| Copper price   | US\$/lb            | 3.00  | Long term incentive price & 4Q17 spot price |
| Gold price     | US\$/oz            | 1,100 | Consensus long term price                   |
| Discount rate  | Real, after<br>tax | 5%    | Equivalent to 10% nominal, pre-tax          |
| Initial Capex  | US\$ m             | 2,000 | Construction and commissioning              |